Towards Electron-Beam-Driven Soft / Polymer Fiber Microrobotics for Vacuum Conditions

OIeg V. Gradov, Margaret A. Gradova, Irina A. Maklakova, Svetlana N. Kholuiskaya

download PDF

Abstract. The possibility of creating vacuum robotics based on the polymer structures irradiated by an electron beam, in particular, polymer fibers, which provide high functional flexibility and a variety of states, is discussed. The possibility of using polymer fibers as different types of MEMS-like electromechanical elements is demonstrated – from elastic cantilevers to springs that change their state under the electron beam. Experimentally proved the presence of different functional types of fibers, correlating with their thickness, as well as the phenomenon of the fiber break. A number of exotic forms of dynamics have been demonstrated and a method for their detection has been developed using 2D Fourier spectra, integral spatial characteristics, time resolved correlograms and wavelet transforms (visualized as the scaleograms / scalograms). Access barcodes for the full video records of the corresponding experiments are provided.

Polymer Fibers, Electron Beam, Microrobotics, Vacuum Microrobotics, Elastic Cantilever, Polymer Fiber Spring, Electron Beam Driven MEMS, Electron Beam Control, 2D Fourier Spectra, Integral Spatial Characteristics, Time Resolved Correlation, Real Time Correlation-Spectral Analysis

Published online 1/5/2022, 14 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: OIeg V. Gradov, Margaret A. Gradova, Irina A. Maklakova, Svetlana N. Kholuiskaya, Towards Electron-Beam-Driven Soft / Polymer Fiber Microrobotics for Vacuum Conditions, Materials Research Proceedings, Vol. 21, pp 370-383, 2022


The article was published as article 64 of the book Modern Trends in Manufacturing Technologies and Equipment

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] H. Wu, H. Handroos, J. Kovanen, A. Rouvinen, P. Hannukainen, T. Saira, L. Jones, Design of parallel intersector weld/cut robot for machining processes in ITER vacuum vessel, Fusion Engineering and Design 69(1-4) (2003) 327-331.
[2] H. Wu, H. Handroos, P. Pessi, Mobile parallel robot for assembly and repair of ITER vacuum vessel, Industrial Robot 35(2) (2008) 160-168.
[3] J.C. Hatchressian, V. Bruno, L. Gargiulo, D. Keller, Y. Perrot, P. Bayetti, J.J. Cordier, J.P. Friconneau, J.D. Palmer, F. Samaille. Development of an inspection robot under ITER relevant vacuum and temperature conditions, Journal of Physics: Conference Series 100(6) (2008) 062031.
[4] M. Li, H. Wu, H. Handroos, G. Yang, Software design of the hybrid robot machine for ITER vacuum vessel assembly and maintenance, Fusion Engineering and Design 88(9-10) (2013) 1872-1876.
[5] H. Wu, Y. Wang, M. Li, M. Al-Saedi, H. Handroos, Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance, Fusion Engineering and Design 89(9-10) (2014) 2357-2362.
[6] M. Li, H. Wu, H. Handroos, G. Yang, Y. Wang, Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance, Fusion Engineering and Design 98 (2015) 1532-1537.
[7] S. Moradkhani, Y.S. Hagh, H. Wu, H. Handroos, Dynamic analysis and control of a fusion reactor vacuum vessel assembly robot, Fusion Engineering and Design 154 (2020) 111532.
[8] M. Kanetomo, H. Kashima, T. Suzuki, Wafer-transfer robot for use in ultrahigh vacuum, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 15(3) (1997) 1385-1388.
[9] M. Kanetomo, H. Kashima, T. Suzuki, Robot for use in ultrahigh vacuum, Solid State Technology 40(8) (1997) 63-68.
[10] H.C. Chen, S.M. Huang, Design and analysis of the power drive module for ultrahigh vacuum wafer-transfer robot, Journal of Energy and Power Engineering 4(6) (2010) 55-59.
[11] M. Cong, T. Li, Design and application of magnetic coupling used for ultra-high vacuum robot, International Journal of Intelligent Systems Technologies and Applications 8(1-4) (2010) 231-246.
[12] M.J. Chung, S.J. Lee, Development of automatic wafer centering system for vacuum transfer robot using for semiconductor manufacturing, Applied Mechanics and Materials 607 (2014) 782-785.
[13] M. Cong, H. Wen, Y. Du, P. Dai, Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot, Chinese Journal of Mechanical Engineering 25(4) (2012) 706-714.
[14] L. Wang, S. Xu, W. Zhang, Y. Liu, Y. Xia, A cable-driven robot arm for visual tracking in tokamak vacuum vessel, IEEE International Conference on Robotics and Biomimetics (ROBIO-2018) (2018) 1125-1131.
[15] O.V. Gradov, M.A. Gradova, A.A. Olkhov, A.L. Iordanskii, Charge propagation along the polymer fiber of polyhydroxybutyrate: Is it possible to apply the cable model? Key Engineering Materials 869 (2020) 246-258.
[16] N. Zaporozhets, Application of air microejector in vacuum gripping device of industrial robot., Mekhanizatsiya i Avtomatizatsiya Proizvodstva (Moscow, USSR) 12 (1986) 25.
[17] S. Belinski, W. Trento, R. Imani-Shikhabadi, S. Hackwood, Robot design for a vacuum environment, Proceedings of the WSTL, 1 (1987) 95-103.
[18] M. Shirazi, Development and testing of a vacuum-compatible robot, Manuf. Rev. 1(4) (1988) 259-264.
[19] J. McCrea, J.T. Cerri, C.R. Hartsfield, Design of a zero-gravity, vacuum-based 3D printer robot for use of in-space satellite assembly, 2018 AIAA Aerospace Sciences Meeting (2018) 2201.
[20] E. Grossman, I. Gouzman, Space environment effects on polymers in low earth orbit, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 208 (2003) 48-57.
[21] B. Basu, S. Biswas, S. Dey, A. Maulik, A. Mazumdar, S. Raha, S. Saha, S. K. Saha, and D. Syam, Polyethylene terephthalate polymers at mountain altitude as cosmic ray heavy particle detector, Radiation Measurements 43 (2008) S262-S265.
[22] U.H. Hossain, W. Ensinger, Experimental simulation of radiation damage of polymers in space applications by cosmic-ray-type high energy heavy ions and the resulting changes in optical properties, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 365 (2015) 230-234.
[23] D. Bója, A. Major, The influence of cosmic radiation on the thermal properties of different polymers, Gradus 4(2) (2017) 351-356.
[24] A.A. Major, D. Boja, What can cosmic radiation cause in polymers? IOP Conference Series: Materials Science and Engineering 448(1) (2018) 012057.
[25] D.I. Park, C.H. Park, Y. Yoo, Vibration simulation of hybrid type substrate handling robot in the vacuum environment, 12th International Conference on Control, Automation and Systems (2012) 2131-2134).
[26] A.C. Clarke, An optimum strategy for interstellar robot probes, Correspondence in Journal of the British Interplanetary Society 31 (1978) 438.
[27] G.L. Matloff, Robosloth: A slow interstellar thin-film robot, Journal of the British Interplanetary Society 49(1) (1996) 33-36.
[28] R. Noble, M.V. Sykes, Small body exploration technologies as precursors for interstellar robotics, Journal of the British Interplanetary Society 66 (2013) 15-24.
[29] E. Rhodes, A.J. Mauceri, M.M. Clarke, T.S. Lindsay, Paper Session IC-Robotics for Interstellar Missions, The Space Congress Proceedings 7 (1993) 35-41.
[30] D. Clery, Robot detector to map cosmos for clues to dark energy’s force, Science 365(6458) (2019) 1066.
[31] S. Vernov, B. Tverskoi, V. Yakovlev, E.V. Gorchakov, P. Ignatev, G. Lyubimov, N.V. Peresleg, O.A. Marchenko, T.E. Shvidkov, N. Kontor T. Morozova, Cosmic-ray measurements by Mars-2 robot space station, Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 38(9) (1974) 1859-1862.
[32] V.I. Gouliaev, T.V. Zavrazhina, Dynamics of a flexible multi-link cosmic robot-manipulator, Journal of Sound and Vibration 243(4) (2001) 641-657.
[33] A. Ellery, Environment-robot interaction-the basis for mobility in planetary micro-rovers, Robotics and Autonomous Systems 51(1) (2005) 29-39.
[34] H. Omori, H. Kitamoto, A. Mizushina, T. Nakamura, T. Kubota, Satellite, planetary or terrestrial subsurface explorer robot based on earthworm locomotion, Journal of Robotics and Mechatronics 26(5) (2014) 660-661.
[35] L. Bai, W.J. Ge, X.H. Chen, M. Zhang, Research on hopping robot for planetary exploration, Robot, 31(4) (2009) 311-319.
[36] L. Bai, W. Ge, X. Chen, R. Chen, Design and dynamics analysis of a bio-inspired intermittent hopping robot for planetary surface exploration, International Journal of Advanced Robotic Systems 9(4) (2012) 109.
[37] L. Bai, W. Ge, X. Chen, X. Kou, Design and implementation of a bio-inspired intermittent hopping robot for planetary surface exploration, Robot 34(1) (2012) 32-37.
[38] A.A. Pankine, K.M. Aaron, M.K. Heun, K.T. Nock, R.S. Schlaifer, C.J. Wyszkowski, A.P. Ingersoll, R.D. Lorenz, Directed aerial robot explorers for planetary exploration, Advances in Space Research 33(10) (2004) 1825-1830.
[39] R. Bertrand, B. Schaefer, M. Van Winnendael, R. Rieder, European tracked micro-robot for planetary surface exploration, IFAC Proceedings Volumes 31(33) (1998) 37-44.
[40] H. Das, X. Bao, Y. Bar-Cohen, R. Bonitz, R.A. Lindemann, M. Maimone, I.A. Nesnas, C.J. Voorhees, Robot manipulator technologies for planetary exploration, Smart Structures and Materials 1999: Smart Structures and Integrated Systems 3668 (1999) 175-182.
[41] A. Seeni, B. Schäfer, G. Hirzinger, Robot mobility systems for planetary surface exploration–state-of-the-art and future outlook: a literature survey, Aerospace Technologies Advancements 492 (2010) 189-208.
[42] I. Nanyageev, I. Shardyko, I. Dalyaev, Motion specification algorithms for both platform and arms of a mobile robot for planetary research, IOP Conference Series: Materials Science and Engineering 747(1) (2020) 012090.
[43] M. Maurette, M. Mellini, J. Silen, I. Tabacco, A. Morbidelli, R. Chatila, Meteorite at dome C? A project for the automated search for meteorites with a planetary exploration robot equipped with two radars, Meteoritics and Planetary Science Supplement 33 (1998) A100.
[44] R. Bertrand, B. Schaefer, R. Reider, European tracked micro-robot for planetary surface exploration, Space Technology 20(2) (2000) 55-64.
[45] G. Musser, Planetary science-NASA’s robot rover scouts unknown terrain on the Angry Red Planet, Scientific American 290(3) (2004) 52-57.
[46] P.J. Westwick, Planetary exploration in extremis: JPL’s robot explorers are the pride of NASA, but the lab nearly got shut down in the budget-cutting early’80s, Engineering and Science 69(4) (2006) 32.
[47] K. Ui, K. Nakaya, K. Konoue, H. Sawada, S. Tsurumi, M. Mori, R. Hodoshima, N. Maeda, H. Okada, N. Miyashita, M. Iai, O. Mori, S. Matunaga, Titech CanSat Project 2000: Report of Sub-orbital Flight and Balloon Experiment, in: M. Rycroft, N. Crosby (Eds.), Smaller Satellites: Bigger Business? Space Studies, 6, Springer, Dordrecht, 2000, pp. 417-418.
[48] N. Sako, Y. Tsuda, S. Ota, T. Eishima, T. Yamamoto, I. Ikeda, H. Ii, H. Yamamoto, H. Tanaka, A. Tanaka, S. Nakasuka, CanSaT suborbital launch experiment-university educational space program using can sized pico-satellite, Acta Astronautica 48(5-12) (2001) 767-776.
[49] T. Eishima, Y. Nakamura, S. Nakasuka, Space outreach program using CanSat-kit, Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology 7(26) (2009) 19-23.
[50] S.H. Won, H.Y. Jun, S.H. Kim, S.R. Lee, Very small satellite program for expending the space technology base: CanSat competition, Journal of the Korean Society for Aeronautical and Space Sciences 40(7) (2012) 636-645.
[51] R. Kawashima, CanSat leader training program: Past, present and future, Ciencia UANL 19(81) (2016) 76-82.
[52] A. Colin, B. Bermudez Reyes, G.E. Morrobel, G.A. Lira Ibarra, D.M. Zúñiga Rosales, L.A. Avalos de la Cruz, M. Villarreal Méndez, J. Mendoza Martínez, B. Alvarez Arce, Construcción de un picosatélite CanSat, Ciencia UANL 19(81) (2016) 34-38.
[53] A. Colin, A pico-satellite assembled and tested during the 6th CanSat Leader Training Program, Journal of Applied Research and Technology 15(1) (2017) 83-91.
[54] L.A., Anchino, A.F., Torti, E.M., Dovis, E. Bernardi, R. Podadera, Implementacion de una Plataforma de Desarrollo CanSat Multiproposito, Elektron 3(2) (2019) 120-127.
[55] H.-U. Oh, H.-I. Kim, J.-K. Kim, J.-S. Choi, S.-H. Kim, Smartphone CanSat for actualization of real-time streaming video calls using remote screen touch system with shape memory alloy actuator, Transactions of the Japan Society for Aeronautical and Space Sciences 62(5) (2019) 256-264.
[56] J. Nakaya, T. Takada, Y. Kajimura, H. Tsuchiya, N. Uezono, Y. Sasaoka, S. Ueta, M. Wakabayashi, K. Kitamura, Development of CubeSat Ground Model Extended from CanSat: Application to Space Education at KOSEN, Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan 18(5) (2020) 281-287.
[57] J.S. Rodríguez, A.Y. Botero, D.V. Lopera, J.G. Serna, F. Botero, Experimental approach for the evaluation of the performance of a satellite module in the CanSat form factor for in situ monitoring and remote sensing applications, International Journal of Aerospace Engineering 2021(81) (2021) 1-28.