Commonly used Polymers for Separation Science


Commonly used Polymers for Separation Science

Shubhalakshmi Sengupta, Anil Kumar Nallajarla, Aparajita Mukherjee, Papita Das

Many synthetic and organic (bio-based) polymers have been used for membrane fabrications. In this chapter, we discuss the structure and properties of some commonly used polymers, which have been used for water purification and gas separation applications. To supplement that, we discuss some characterization tools and membrane module testing conditions for performance checks.

Polymers, Membrane Separation, Water Purification, Filtration, Membrane Modules

Published online , 24 pages

Citation: Shubhalakshmi Sengupta, Anil Kumar Nallajarla, Aparajita Mukherjee, Papita Das, Commonly used Polymers for Separation Science, Materials Research Foundations, Vol. 113, pp 9-32, 2021


Part of the book on Polymeric Membranes for Water Purification and Gas Separation

[1] B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship, Desalination 326 (2013) 77-95.
[2] C. de Morais Coutinho, R.C. Chiu, R.C. Basso, A.P. Ribeiro, L.A. Gonçalves, L.A. Viotto, State of art of the application of membrane technology to vegetable oils: A review, Food. Res. Int. 42 (2009) 536-550.
[3] R. Das, M. Khayet, Nanotechnology based platforms for efficient water desalination, Desalination 451 (2019) 1-1.
[4] R. Das, M. Kuehnert, A. Sadat Kazemi, Y. Abdi, A. Schulze, Water softening using a light responsive, spiropyran-modified nanofiltration membrane, Polymers 11 (2019) 344 (1-10).
[5] R. Das, Nanohybrid catalyst based on carbon nanotube, Springer, New York, USA, 2017.
[6] C. Y. Pan, G.R. Xu, K. Xu, H.L. Zhao, Y. Q. Wu, H.C. Su, J.M. Xu, R. Das, Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives, Sep. Purif. Technol. 221 (2019) 44-63.
[7] S. B. Abd Hamid, S. K. Zain, R. Das, G. Centi, Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose, Carbohyd. Polym. 138 (2016) 349-335.
[8] G.R. Xu, J.M. Xu, H. C. Su, X. Y. Liu, H. L. Zhao, H. J. Feng, R. Das, Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions, Desalination 451 (2019) 18-34.
[9] M.R. Kessler, Polymer matrix composites: A perspective for a special issue of polymer reviews, Polym. Rev. 52.3 (2012) 229-233.
[10] T. X. Mei, D. Rodrigue, A review on porous polymeric membrane preparation. Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene, Polymers 11.8 (2019) 1310 (1-35).
[11] Information on
[12] S. Ayaz, H.Y. Yu, Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets, Polym. Test. 93 (2021) 106941 (1-9).
[13] N.I.M. Nawi, M.R. Bilad, N. Zolkhiflee, N.A.H. Nordin, W.J. Lau, T. Narkkun, K. Faungnawakij, N. Arahman, T.M.I. Mahlia, Development of A Novel Corrugated Polyvinylidene difluoride Membrane via Improved Imprinting Technique for Membrane Distillation, Polymers 11 (2019) 865 (1-13).
[14] S. Tungrapa, T. Pungparn, M. Weerasombut, I. J. Jangchud, P. Fakum, S. Semongkhol, C. Meechaisue, P. Supaphol, Cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14 (2007) 563-575.
[15] P. Yadav, N. Ismail, M. Essalhi, M. Tysklind, D. Athanassiadis, N. Tavajohi, Assessment of the environmental impact of polymeric membrane production, J. Membr. Sci. 622 (2021) 118987 (1-8).
[16] E. Kianfar, V. Cao, Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review, J. Mater. Res. Technol. 10 (2021) 1437-1461.
[17] K. Amulya, R. Katakojwala, S. Ramakrishna, S.V. Mohan, Low carbon biodegradable polymer matrices for sustainable future, Composites Part C: Open Access 4 (2021) 100111 (1-13).
[18] Z. Gao, Y. Wang, H. Wu, Y. Ren, Z. Guo, X. Liang, Y. Wu, Y. Liu, Z. Jiang, Surface Functionalization of Polymers of Intrinsic Microporosity (PIMs) Membrane by Polyphenol for Efficient CO2 Separation, Green Chem. Eng. 2 (2021) 70-76.
[19] H. Strathmann, The use of membranes in downstream processing, Food Biotechnol. 4 (1990) 253-272.
[20] D. M. Warsinger, S. Chakraborty, E.W. Tow, M.H. Plumlee, C. Bellona, S. Loutatidoi, H. A. Arafat, A review of polymeric membranes and processes for potable water reuse, Prog. Polym. Sci. 81 (2018) 209-237.
[21] M. Cheryan, Ultrafiltration and microfiltration handbook, CRC press, USA, 1998.
[22] L. Lin, K.C. Rhee, S.S. Koseoglu, Bench-scale membrane degumming of crude vegetable oil: Process optimization, J. Membr. Sci. 134 (1997) 101–108.
[23] B. Ostegaard, Applications of membrane processing in the dairy industry. In D. MacCarthy (Ed.), Concentration and drying of foods, Oxford: Elsevier Applied Science Publishers, 1989, pp. 133–145.
[24] Q. Liu, G. R. Xu, R. Das, Inorganic scaling in reverse osmosis (RO) desalination: Mechanisms, monitoring, and inhibition strategies, Desalination 468 (2019) 114065 (1-17).
[25] B. Pan, X. Zhang, Z. Jiang, Z. Li, Q. Zhang, J. Chen, Polymer and polymer based nanocomposite adsorbents for water treatment, in R. Das (Ed.), Polymeric materials for clean water, Springer, Cham, 2019, pp 93-120.
[26] C. C. Pereira, A. C. Habert, R. Nobrega, C. P. Borges. New insights in the removal of diluted volatile organic compounds from dilute aqueous solution by pervaporation process, J. Membr. Sci. 138 (1998) 227-235.
[27] S.I. Nakao, Determination of pore size and pore size distribution: Filtration membranes, J. Membr. Sci. 96 (1994) 131-165.
[28] W. H. Modler, Milk processing, in: N. Shuryo and W. H. Modler (Eds), Food protein processing applications, Wiley: VCH inc., 2000, pp 1-88.
[29] B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules 32 (1999) 375–380.
[30] M. R. Scheinfein, J. Unguris, H. K. Michael, D. T. Pierce, R.J. Celotta, Scannng electron microscopy with polarization analysis (SEMPA), Rev. Sci. Instrum. 61(1990) 2501-2527.
[31] R. Ziel, A. Haus, A. Tulke, Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis, J. Membr. Sci. 323 (2008) 241–246.
[32] Y. Ren, J. Zhu, S. Cong, J. Wang, B. Van der Bruggen, J. Liu, Y. Zhang, High flux thin film nanocomposite membranes based on porous organic polymers for nanofiltration, J. Membr. Sci. 585 (2019) 19–28.
[33] S. Taheri, M. Ams, H. Bustamante, L. Vorreiter, M. Withford, S M. Clark, A practical methodology to assess corrosion in concrete sewer pipes, in: MATEC Web of Conferences, EDP Sciences, 2018, 199, pp 6010 (1-4).
[34] X. Wencheng, J. Yang, C. Liang, Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM, Appl. Surf. Sci. 293 (2014) 293-298.
[35] R. Ziel, A. Haus, A. Tulke, Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis, J. Membr. Sci. 323, 2 (2008) 241-246.
[36] B. Chakrabarty, A. K. Ghosal, M. K. Purkait. SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive, J. Colloid Interface Sci. 320 (2008) 245-253.
[37] P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Sep. Purif. Technol. 81 (2011) 243–264.
[38] F.H. Akhtar, M. Kumar, L.F. Villalobos, H. Vovusha, R. Shevate, U. Schwingenschlogl, K.V. Peinemann, Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity, J. Mater. Chem. A. 5.41 (2017) 21807–21819.
[39] C.Y. Tang, Z. Yang, Transmission electron microscopy, in: N. Hilal, A. F. Ismail, T. Matsuura., D. A. Radcliffe (Eds.), Membrane Characterization, Elsevier, 2017, pp. 145-159.
[40] M. Saberi, P. Rouhi, M. Teimoori, Estimation of dual mode sorption parameters for CO2 in the glassy polymers using group contribution approach, J. Membr. Sci. 595 (2020) 117481.
[41] M. T. Weller, Inorganic Materials Chemistry; Oxford University Press: Oxford, UK, 1995.
[42] C. Suryanarayana, M.G. Norton, X-ray Diffraction: A Practical Approach; Springer: New York, NY, USA, 2013.
[43] Y. Alqaheem, A. Alomair, A. Alhendi, S. Alkandari, N. Tanoli, N. Alnajdi, A. Quesada-Peréz, Preparation of polyetherimide membrane from non-toxic solvents for the separation of hydrogen from methane, Chem. Cent. J. 12 (2018) 1-8.
[44] Q. Shen, S. Cong, R. He, Z. Wang, Y. Jin, H. Li, X. Cao, J. Wang, B. Van der Bruggen, Y. Zhang, SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation, J. Membr. Sci. 588(2019) 117201 (1-7).
[45] S. Thomas, D. Rouxel, D. Ponnamma, Spectroscopy of Polymer Nanocomposites, William Andrew Publishing:Oxford, UK, 2016.
[46] A. Ali, Failure Analysis and Prevention, IntechOpen: London, UK, 2017.
[47] J.H. Fendler, Nanoparticles and nanostructured films: Preparation, Characterization, and Applications, Wiley: Hoboken, NJ, USA, 2008
[48] T. Xiao, H. Yuan, Q. Ma, X. Guo, Y. Wu, An approach for in situ qualitative and quantitative analysis of moisture adsorption in nanogram-scaled lignin by using micro-FTIR spectroscopy and partial least squares regression, Int. J. Biol. Macromol. 132 (2019) 1106–1111.
[49] D.W. Sun, Modern Techniques for food Authentication, Elsevier Science: Amsterdam, The Netherlands, 2008.
[50] S. Hansen, S Pedersen-Bjergaard, K. Rasmussen, Introduction to Pharmaceutical Chemical Analysis, Wiley: Hoboken, NJ, USA, 2011.
[51] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, A.S. Sultan, Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation, J. Appl. Polym. Sci. 132 (2015) 42205 (1-10).
[52] H. Zhu, L. Wang, X. Jie, D. Liu, Y. Cao, Improved interfacial affnity and CO2 separation performance of asymmetric mixed matrix membranes by incorporating postmodified MIL-53(Al), ACS Appl. Mater. Interfaces 8 (2016) 22696–22704.
[53] J. Grdadolnik, ATR-FTIR spectroscopy: Its advantages and limitations, Acta Chim. Slov. 49 (2002) 631–642.
[54] B C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, Taylor & Francis: Abingdon-on-Thames, UK, 1995.
[55] K. Scott, Hand Book of Industrial membranes, First ed., Elsevier, Netherlands, 1998.
[56] R.W. Baker, Membrane technology and applications. Wiley online Library: Hoboken, NJ, USA, 2012.
[57] J. Balster, E. Drioli, L. Giorno, Hollow fiber membrane module, in: E. Drioli, L. Giorno (Eds.), Encyclopedia of membranes, Springer, 2016, pp. 959-957.
[58] B. Gu, D.Y. Kim, J.H. Kim, D.R. Yang, Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module, J. Membr. Sci. 379 (2011) 403-415.
[59] E. O. Ezugbe, S. Rathilal, Membrane Technologies in Wastewater Treatment: A Review, Membranes 10 (2020) 89 (1-28).
[60] Y. Zhu, D. Wang, L. Jiang, J. Jin, Recent progress in developing advanced membranes for emulsified oil/water separation, NPG Asia Mater. 6 (2014) e101 (1-11).
[61] M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-rahmati, Performance studies of mixed matrix membranes for gas separation: a review, Sep. Purif. Technol. 75 (2010) 229-242.
[62] D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem. 19 (2013) 375-393.
[63] R. Faiz, K. Li, Polymeric membranes for light olefin/paraffin separation, Desalination 287 (2012) 82-97.
[64] S. Sengupta, D. Ray, Vegetable oil-based polymer composites: synthesis, properties and their applications, in: V. K. Thakur, M. K. Thakur, M. R. Kessler (Eds.), Handbook of composites from renewable materials, polymeric composites, Wiley, 2017, pp. 441-466.
[65] C.A. Scholes, S.E. Kentish, G.W. Stevens, Effects of minor components in carbon dioxide capture using polymeric gas separation membranes, Sep. Purif. Rev. 38 (2009) 1-44.
[66] A.P. Ribeiro, J.M. de Moura, L.A. Gonçalves, J.C. Petrus, L.A. Viotto, Solvent recovery from soybean oil/hexane miscella by polymeric membranes, J. Membr. Sci. 282 (2006) 328-336.
[67] S. Sridhar, B. Smitha, T.M. Aminabhavi, Separation of carbon dioxide from natural gas mixtures through polymeric membranes-a review, Sep. Purif. Rev. 36 (2007) 113-174.
[68] Z.Y. Yeo, T.L. Chew, P.W. Zhu, A.R. Mohamed, S.P. Chai, Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review, J. Nat. Gas. Chem. 21 (2012) 282-298.
[69] M.M. Aijumaily, M.A. Alsaadi, N.A. Hashim, Q.F. Alsalhy, R. Das, F. Mjalli, Embedded high-hydrophobic CNMs prepared by CVD technique with PVDF-co-HFP membrane for application in water desalination by DCMD, Desalin. Water Treat. 142 (2019) 37-48.
[70] Y. Kodaira, T. Miura, S. Ito, K. Emori, A. Yonezu, H. Nagatsuka, Evaluation of Crack Propagation Behavior of Porous Polymer Membranes, Polym. Test. 96 (2021), 107124 (1-14).
[71] P.C. DeLeo, H. Summers, K. Stanton, M.W. Lam, Environmental risk assessment of polycarboxylate polymers used in cleaning products in the United States, Chemosphere 258 (2020) 127242 (1-9).
[72] S. Cong, J. Wang, Z. Wang, X. Liu, Polybenzimidazole (PBI) and benzimidazole-linked polymer (BILP) membranes, Green Chem. Eng. 2 (2021) 44-56.
[73] F.G. Torres, O.P. Troncoso, F. Piaggio, A. Hijar, Structure–property relationships of a biopolymer network: The eggshell membrane, Acta. Biomater. 6 (2010) 3687-3693.
[74] Z. F. Cui, Y. Jiang, R. W. Field, Fundamentals of Pressure-Driven Membrane Separation Processes, Membr. Technol. (2010) 1-18.