Application of Magnetic Nano Particles and their Composites as Adsorbents for Waste Water Treatment: A Brief Review


Application of Magnetic Nano Particles and their Composites as Adsorbents for Waste Water Treatment: A Brief Review

Meenakshi Dhiman, Baljinder Kaur, Balwinder Kaur

The present review highlights the different types of nano ferrites and their surface modified composites as an alternative adsorbent in waste water treatment. In this review, the recent progresses and potential applications of SFNPs/SFNCs for the removal of organic and inorganic contaminants through adsorption routes are critically reviewed. There are number of water purification techniques but the adsorption is one of the simplest, effective and economical method for wastewater purification. Adsorption isotherm models, kinetic models, thermodynamic parameters and adsorption mechanism have also been discussed. The present article lists different type of adsorbents and reviews state-of-the-art of the removal of different pollutants from water. The efforts have been made to discuss the sources of contamination and toxicities of pollutants. The possible techniques of recovery and reuse, toxicity, research gaps and the future perspective of SFNPs are also discussed in brief. Based on this review, it is possible to conclude that SFNPs and their derivative composites have unlimited capacity in addressing array of problems encountered in water and wastewater treatment. The present study highlights the future areas of research for waste water treatment.

Spinel Ferrite, Spinel Ferrite Composites, Wastewater, Adsorbents, Dyes, Regeneration

Published online , 33 pages

Citation: Meenakshi Dhiman, Baljinder Kaur, Balwinder Kaur, Application of Magnetic Nano Particles and their Composites as Adsorbents for Waste Water Treatment: A Brief Review, Materials Research Foundations, Vol. 112, pp 246-278, 2021


Part of the book on Ferrite

[1] S. Yáñez-Vilar, M. Sánchez-Andújar, C. Gómez-Aguirre, J. Mira, M.A. Señarís-Rodríguez, S. Castro-García, A simple solvothermal synthesis of MFe2O4 (M= Mn, Co and Ni) nanoparticles, Journal of Solid State Chemistry, 182 (2009) 2685-2690.
[2] O. Yelenich, S. Solopan, J.-M. Greneche, A. Belous, Synthesis and properties MFe2O4 (M= Fe, Co) nanoparticles and core–shell structures, Solid State Sciences, 46 (2015) 19-26.
[3] W. Wang, Z. Ding, X. Zhao, S. Wu, F. Li, M. Yue, J.P. Liu, Microstructure and magnetic properties of MFe2O4 (M= Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method, Journal of Applied Physics, 117 (2015) 17A328.
[4] P. Dhiman, N. Dhiman, A. Kumar, G. Sharma, M. Naushad, A.A. Ghfar, Solar active nano-Zn1− xMgxFe2O4 as a magnetically separable sustainable photocatalyst for degradation of sulfadiazine antibiotic, Journal of Molecular Liquids, 294 (2019) 111574.
[5] P. Dhiman, T. Mehta, A. Kumar, G. Sharma, M. Naushad, T. Ahamad, G.T. Mola, Mg0. 5NixZn0. 5-xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of Reactive Blue-19, Advanced Powder Technology, (2020).
[6] E. Santiago, G. Márquez, R. Guillén-Guillén, C. Jaimes, V. Sagredo, G.E. Delgado, caracterización de nanocompósitos de hematita y ferritas mixtas de ni-zn sintetizados mediante el método de coprecipitación, La Revista Latinoamericana de Metalurgia y Materiales, RLMM, 40 (2020).
[7] R. Panda, R. Muduli, G. Jayarao, D. Sanyal, D. Behera, Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles, Journal of Alloys and Compounds, 669 (2016) 19-28.
[8] P. Motavallian, B. Abasht, H. Abdollah-Pour, Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol–gel based Pechini method, Journal of Magnetism and Magnetic Materials, 451 (2018) 577-586.
[9] B. Abasht, A. Beitollahi, S.M. Mirkazemi, Processing, structure and magnetic properties correlation in co-precipitated Ca-ferrite, Journal of Magnetism and Magnetic Materials, 420 (2016) 263-268.
[10] D. MacAllister, A. MacDonald, S. Kebede, S. Godfrey, R. Calow, Comparative performance of rural water supplies during drought, Nature communications, 11 (2020) 1-13.
[11] A. Mark, Science and technology for water purification in the coming decades, Nature, 452 (2008) 20.
[12] A. Biewald, S. Rolinski, H. Lotze-Campen, C. Schmitz, J.P. Dietrich, Valuing the impact of trade on local blue water, Ecological Economics, 101 (2014) 43-53.
[13] B.P. Walsh, S.N. Murray, D. O’Sullivan, The water energy nexus, an ISO50001 water case study and the need for a water value system, Water Resources and Industry, 10 (2015) 15-28.
[14] U. Water, WWAP (United Nations World Water Assessment Programme)(2016)(pp. 1–148), Paris, France: The United Nations World Water Development Report, (2016).
[15] K. Feng, K. Hubacek, S. Pfister, Y. Yu, L. Sun, Virtual scarce water in China, Environmental Science & Technology, 48 (2014) 7704-7713.
[16] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angewandte Chemie International Edition, 54 (2015) 3368-3386.
[17] G.M. Ochieng, E.S. Seanego, O.I. Nkwonta, Impacts of mining on water resources in South Africa: A review, Scientific Research and Essays, 5 (2010) 3351-3357.
[18] G.M. Naja, B. Volesky, 9 Treatment of Metal-Bearing, Heavy Metals in the Environment, (2009) 247.
[19] S. Water, W.H. Organization, Guidelines for drinking-water quality. Vol. 1, Recommendations, (2004).
[20] S. Tong, Y.E.v. Schirnding, T. Prapamontol, Environmental lead exposure: a public health problem of global dimensions, Bulletin of the world health organization, 78 (2000) 1068-1077.
[21] C.A. Quist-Jensen, F. Macedonio, E. Drioli, Membrane technology for water production in agriculture: Desalination and wastewater reuse, Desalination, 364 (2015) 17-32.
[22] A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: a critical review, Water research, 75 (2015) 164-187.
[23] A. Cincinelli, T. Martellini, E. Coppini, D. Fibbi, A. Katsoyiannis, Nanotechnologies for removal of pharmaceuticals and personal care products from water and wastewater. A review, Journal of nanoscience and nanotechnology, 15 (2015) 3333-3347.
[24] E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Applied Catalysis B: Environmental, 166 (2015) 603-643.
[25] J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, Journal of membrane science, 479 (2015) 256-275.
[26] G. Ungureanu, S. Santos, R. Boaventura, C. Botelho, Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption, Journal of environmental management, 151 (2015) 326-342.
[27] H.M. Saeed, G.A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A.A. Fara, S. Azzam, R. Khawaga, A. Aidan, Microbial desalination cell technology: a review and a case study, Desalination, 359 (2015) 1-13.
[28] N. Wang, X. Zhang, Y. Wang, W. Yu, H.L. Chan, Microfluidic reactors for photocatalytic water purification, Lab on a Chip, 14 (2014) 1074-1082.
[29] T.A. Kurniawan, G.Y. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chemical engineering journal, 118 (2006) 83-98.
[30] F. Fu, Q. Wang, A review of removal of heavy metal ions from wastewaters, Journal of environmental management, 92 (2011) 407-418.
[31] M. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian journal of chemistry, 4 (2011) 361-377.
[32] S.J. Tesh, T.B. Scott, Nano‐composites for water remediation: A review, Advanced Materials, 26 (2014) 6056-6068.
[33] H. Shin, D. Tiwari, D.-J. Kim, Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste, Journal of Water Process Engineering, 37 (2020) 101484.
[34] Y. Anjaneyulu, N.S. Chary, D.S.S. Raj, Decolourization of industrial effluents–available methods and emerging technologies–a review, Reviews in Environmental Science and Bio/Technology, 4 (2005) 245-273.
[35] Q. Jiuhui, Research progress of novel adsorption processes in water purification: a review, Journal of environmental sciences, 20 (2008) 1-13.
[36] N.P. Raval, P.U. Shah, N.K. Shah, Adsorptive removal of nickel (II) ions from aqueous environment: A review, Journal of environmental management, 179 (2016) 1-20.
[37] D.H.K. Reddy, S.-M. Lee, Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454 (2014) 96-103.
[38] A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R. Dichtel, Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer, nature, 529 (2016) 190-194.
[39] R. Jasrotia, N. Kumari, R. Kumar, M. Naushad, P. Dhiman, G. Sharma, Photocatalytic degradation of environmental pollutant using nickel and cerium ions substituted Co0.6Zn0.4Fe2O4 nanoferrites, Earth Systems and Environment, (2021).
[40] H. Zhao, X. Song, H. Zeng, 3D white graphene foam scavengers: vesicant-assisted foaming boosts the gram-level yield and forms hierarchical pores for superstrong pollutant removal applications, NPG Asia Materials, 7 (2015) e168-e168.
[41] P. Dhiman, N. Dhiman, A. Kumar, G. Sharma, M. Naushad, A.A. Ghfar, Solar active nano-Zn1−xMgxFe2O4 as a magnetically separable sustainable photocatalyst for degradation of sulfadiazine antibiotic, Journal of Molecular Liquids, 294 (2019) 111574.
[42] Y.-J. Tu, C.-F. You, C.-K. Chang, S.-L. Wang, T.-S. Chan, Arsenate adsorption from water using a novel fabricated copper ferrite, Chemical Engineering Journal, 198-199 (2012) 440-448.
[43] D.H.K. Reddy, S.-M. Lee, Synthesis and characterization of a chitosan ligand for the removal of copper from aqueous media, Journal of Applied Polymer Science, 130 (2013) 4542-4550.
[44] A.J. Howarth, M.J. Katz, T.C. Wang, A.E. Platero-Prats, K.W. Chapman, J.T. Hupp, O.K. Farha, High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks, Journal of the American Chemical Society, 137 (2015) 7488-7494.
[45] P. Tian, X.-y. Han, G.-l. Ning, H.-x. Fang, J.-w. Ye, W.-t. Gong, Y. Lin, Synthesis of Porous Hierarchical MgO and Its Superb Adsorption Properties, ACS Applied Materials & Interfaces, 5 (2013) 12411-12418.
[46] C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S. Hou, Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal, ACS Applied Materials & Interfaces, 4 (2012) 1186-1193.
[47] Z.-Y. Sui, Y. Cui, J.-H. Zhu, B.-H. Han, Preparation of Three-Dimensional Graphene Oxide–Polyethylenimine Porous Materials as Dye and Gas Adsorbents, ACS Applied Materials & Interfaces, 5 (2013) 9172-9179.
[48] B. Chen, Q. Ma, C. Tan, T.-T. Lim, L. Huang, H. Zhang, Carbon-Based Sorbents with Three-Dimensional Architectures for Water Remediation, Small, 11 (2015) 3319-3336.
[49] Y. Shen, Q. Fang, B. Chen, Environmental Applications of Three-Dimensional Graphene-Based Macrostructures: Adsorption, Transformation, and Detection, Environmental Science & Technology, 49 (2015) 67-84.
[50] Z. Wu, D. Zhao, Ordered mesoporous materials as adsorbents, Chemical Communications, 47 (2011) 3332-3338.
[51] P.Z. Ray, H.J. Shipley, Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review, RSC Advances, 5 (2015) 29885-29907.
[52] M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media), Chemical Reviews, 113 (2013) 7728-7768.
[53] V.M. Nurchi, I. Villaescusa, Agricultural biomasses as sorbents of some trace metals, Coordination Chemistry Reviews, 252 (2008) 1178-1188.
[54] Z. Guo, C. Xie, P. Zhang, J. Zhang, G. Wang, X. He, Y. Ma, B. Zhao, Z. Zhang, Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm, Science of The Total Environment, 580 (2017) 1300-1308.
[55] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions, Journal of Hazardous Materials, 283 (2015) 329-339.
[56] S. Aoudj, A. Khelifa, N. Drouiche, R. Belkada, D. Miroud, Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: Application of a hybrid Fe-Al anode, Chemical Engineering Journal, 267 (2015) 153-162.
[57] S.W. Won, P. Kotte, W. Wei, A. Lim, Y.-S. Yun, Biosorbents for recovery of precious metals, Bioresource Technology, 160 (2014) 203-212.
[58] H. Figueiredo, C. Quintelas, Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites, Journal of Hazardous Materials, 274 (2014) 287-299.
[59] S. Qiu, Z. Lin, Y. Zhou, D. Wang, L. Yuan, Y. Wei, T. Dai, L. Luo, G. Chen, Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles, Analyst, 140 (2015) 1149-1154.
[60] N.V. Quy, N.D. Hoa, M. An, Y. Cho, D. Kim, A high-performance triode-type carbon nanotube field emitter for mass production, Nanotechnology, 18 (2007) 345201.
[61] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review, Carbohydrate Polymers, 113 (2014) 115-130.
[62] G.Z. Kyzas, D.N. Bikiaris, Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review, Marine Drugs, 13 (2015).
[63] J. Gómez-Pastora, E. Bringas, I. Ortiz, Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications, Chemical Engineering Journal, 256 (2014) 187-204.
[64] D. Peng, B. Wu, H. Tan, S. Hou, M. Liu, H. Tang, J. Yu, H. Xu, Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil, Chemosphere, 228 (2019) 44-53.
[65] D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?, Coordination Chemistry Reviews, 315 (2016) 90-111.
[66] D. Kang, X. Yu, M. Ge, W. Song, One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207 (2015) 170-178.
[67] W.-H. Xu, L. Wang, J. Wang, G.-P. Sheng, J.-H. Liu, H.-Q. Yu, X.-J. Huang, Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water, CrystEngComm, 15 (2013) 7895-7903.
[68] Z. Jia, Q. Qin, J. Liu, H. Shi, X. Zhang, R. Hu, S. Li, R. Zhu, The synthesis of hierarchical ZnFe2O4 architecture and their application for Cr(VI) adsorption removal from aqueous solution, Superlattices and Microstructures, 82 (2015) 174-187.
[69] Y.-R. He, S.-C. Li, X.-L. Li, Y. Yang, A.-M. Tang, L. Du, Z.-Y. Tan, D. Zhang, H.-B. Chen, Graphene (rGO) hydrogel: A promising material for facile removal of uranium from aqueous solution, Chemical Engineering Journal, 338 (2018) 333-340.
[70] R. Rahimi, H. Kerdari, M. Rabbani, M. Shafiee, Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution, Desalination, 280 (2011) 412-418.
[71] X. Hou, J. Feng, X. Liu, Y. Ren, Z. Fan, T. Wei, J. Meng, M. Zhang, Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater, Journal of Colloid and Interface Science, 362 (2011) 477-485.
[72] D.H.K. Reddy, S.-M. Lee, Three-Dimensional Porous Spinel Ferrite as an Adsorbent for Pb(II) Removal from Aqueous Solutions, Industrial & Engineering Chemistry Research, 52 (2013) 15789-15800.
[73] T. Dong, X. Zhang, M. Li, P. Wang, P. Yang, Hierarchical flower-like Ni–Co layered double hydroxide nanostructures: synthesis and super performance, Inorganic Chemistry Frontiers, 5 (2018) 3033-3041.
[74] A.-S.A. Bakr, Y.M. Moustafa, E.A. Motawea, M.M. Yehia, M.M.H. Khalil, Removal of ferrous ions from their aqueous solutions onto NiFe2O4–alginate composite beads, Journal of Environmental Chemical Engineering, 3 (2015) 1486-1496.
[75] Z. Jia, Q. Wang, J. Liu, L. Xu, R. Zhu, Effective removal of phosphate from aqueous solution using mesoporous rodlike NiFe2O4 as magnetically separable adsorbent, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436 (2013) 495-503.
[76] S. Chaturvedi, P.N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate, Journal of Saudi Chemical Society, 17 (2013) 135-149.
[77] I. Mohmood, C.B. Lopes, I. Lopes, I. Ahmad, A.C. Duarte, E. Pereira, Nanoscale materials and their use in water contaminants removal—a review, Environmental Science and Pollution Research, 20 (2013) 1239-1260.
[78] S. Thatai, P. Khurana, J. Boken, S. Prasad, D. Kumar, Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review, Microchemical Journal, 116 (2014) 62-76.
[79] W. Wu, Q. He, C. Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Research Letters, 3 (2008) 397.
[80] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: A review, Journal of Hazardous Materials, 211-212 (2012) 317-331.
[81] J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, X. Huang, Nanomaterials for the Removal of Heavy Metals from Wastewater, Nanomaterials (Basel), 9 (2019) 424.
[82] K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review, Sustainable Materials and Technologies, 23 (2020) e00140.
[83] F. Moeinpour, A. Alimoradi, M. Kazemi, Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles, Journal of Environmental Health Science and Engineering, 12 (2014) 112.
[84] P. Dhiman, M. Patial, A. Kumar, M. Alam, M. Naushad, G. Sharma, D.-V.N. Vo, R. Kumar, Environmental friendly and robust Mg0.5-xCuxZn0.5Fe2O4 spinel nanoparticles for visible light driven degradation of Carbamazepine: Band shift driven by dopants, Materials Letters, 284 (2021) 129005.
[85] M. Verma, A. Kumar, K.P. Singh, R. Kumar, V. Kumar, C.M. Srivastava, V. Rawat, G. Rao, S. Kumari, P. Sharma, H. Kim, Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium, Journal of Molecular Liquids, 315 (2020) 113769.
[86] S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, A.K. Sood, Graphene Oxide–MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water, ACS Applied Materials & Interfaces, 6 (2014) 17426-17436.
[87] S. Chella, P. Kollu, E.V.P.R. Komarala, S. Doshi, M. Saranya, S. Felix, R. Ramachandran, P. Saravanan, V.L. Koneru, V. Venugopal, S.K. Jeong, A. Nirmala Grace, Solvothermal synthesis of MnFe2O4-graphene composite—Investigation of its adsorption and antimicrobial properties, Applied Surface Science, 327 (2015) 27-36.
[88] B. Verma, C. Balomajumder, Magnetic magnesium ferrite–doped multi-walled carbon nanotubes: an advanced treatment of chromium-containing wastewater, Environmental Science and Pollution Research, 27 (2020) 13844-13854.
[89] L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Adsorption capability for Congo red on nanocrystalline MFe2O4 (M=Mn, Fe, Co, Ni) spinel ferrites, Chemical Engineering Journal, 181-182 (2012) 72-79.
[90] H.-Y. Zhu, R. Jiang, Y.-Q. Fu, R.-R. Li, J. Yao, S.-T. Jiang, Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation, Applied Surface Science, 369 (2016) 1-10.
[91] G.Z. Kyzas, N.A. Travlou, O. Kalogirou, E.A. Deliyanni, Magnetic Graphene Oxide: Effect of Preparation Route on Reactive Black 5 Adsorption, Materials, 6 (2013).
[92] M.K. Yadav, A.K. Gupta, P.S. Ghosal, A. Mukherjee, pH mediated facile preparation of hydrotalcite based adsorbent for enhanced arsenite and arsenate removal: Insights on physicochemical properties and adsorption mechanism, Journal of Molecular Liquids, 240 (2017) 240-252.
[93] N. Jordan, A. Ritter, A.C. Scheinost, S. Weiss, D. Schild, R. Hübner, Selenium(IV) Uptake by Maghemite (γ-Fe2O3), Environmental Science & Technology, 48 (2014) 1665-1674.
[94] L. Yang, Y. Zhang, X. Liu, X. Jiang, Z. Zhang, T. Zhang, L. Zhang, The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4, Chemical Engineering Journal, 246 (2014) 88-96.
[95] T. Tuutijärvi, J. Lu, M. Sillanpää, G. Chen, Adsorption Mechanism of Arsenate on Crystal γ -Fe2 O3 Nanoparticles, Journal of Environmental Engineering, 136 (2010) 897-905.
[96] Z. Jia, K. Peng, L. Xu, Preparation, characterization and enhanced adsorption performance for Cr(VI) of mesoporous NiFe2O4 by twice pore-forming method, Materials Chemistry and Physics, 136 (2012) 512-519.
[97] S. Lata, S.R. Samadder, Removal of arsenic from water using nano adsorbents and challenges: A review, Journal of environmental management, 166 (2016) 387-406.
[98] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science, 209 (2014) 172-184.
[99] G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos, A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi, S.K. Sharma, M.C. Chattopadhyaya, M. Giugni, S. Meric, Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview, Water Research, 92 (2016) 22-37.
[100] A. Afkhami, R. Norooz-Asl, Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346 (2009) 52-57.
[101] M. Auffan, J. Rose, O. Proux, D. Borschneck, A. Masion, P. Chaurand, J.-L. Hazemann, C. Chaneac, J.-P. Jolivet, M.R. Wiesner, A. Van Geen, J.-Y. Bottero, Enhanced Adsorption of Arsenic onto Maghemites Nanoparticles:  As(III) as a Probe of the Surface Structure and Heterogeneity, Langmuir, 24 (2008) 3215-3222.
[102] Y.-J. Tu, C.-F. You, C.-K. Chang, T.-S. Chan, S.-H. Li, XANES evidence of molybdenum adsorption onto novel fabricated nano-magnetic CuFe2O4, Chemical Engineering Journal, 244 (2014) 343-349.
[103] Y. Zhang, L. Yan, W. Xu, X. Guo, L. Cui, L. Gao, Q. Wei, B. Du, Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide, Journal of Molecular Liquids, 191 (2014) 177-182.
[104] S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4, Chemical Engineering Journal, 158 (2010) 599-607.
[105] N. Abbas, N. Rubab, N. Sadiq, S. Manzoor, M.I. Khan, J. Fernandez Garcia, I. Barbosa Aragao, M. Tariq, Z. Akhtar, G. Yasmin, Aluminum-Doped Cobalt Ferrite as an Efficient Photocatalyst for the Abatement of Methylene Blue, Water, 12 (2020).
[106] G. Sharma, A. Kumar, S. Sharma, M. Naushad, P. Dhiman, D.-V.N. Vo, F.J. Stadler, Fe3O4/ZnO/Si3N4 nanocomposite based photocatalyst for the degradation of dyes from aqueous solution, Materials Letters, 278 (2020) 128359.
[107] P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D.-V.N. Vo, N. AlMasoud, M. Naushad, Z.A. Alothman, Robust magnetic ZnO-Fe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection, Environmental Research, 197 (2021) 111074.
[108] X. Zhang, P. Zhang, Z. Wu, L. Zhang, G. Zeng, C. Zhou, Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 435 (2013) 85-90.
[109] Y. Yao, S. Miao, S. Yu, L.P. Ma, H. Sun, S. Wang, Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent, J Colloid Interface Sci, 379 (2012) 20-26.
[110] A. Middea, L.S. Spinelli, F.G. Souza Jr, R. Neumann, T.L.A.P. Fernandes, O.d.F.M. Gomes, Preparation and characterization of an organo-palygorskite-Fe3O4 nanomaterial for removal of anionic dyes from wastewater, Applied Clay Science, 139 (2017) 45-53.
[111] H. Yan, H. Li, H. Yang, A. Li, R. Cheng, Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere, Chemical Engineering Journal, 223 (2013) 402-411.
[112] G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, J. Wang, A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution, Journal of Materials Chemistry, 22 (2012) 1033-1039.
[113] C. Ren, X. Ding, H. Fu, C. Meng, W. Li, H. Yang, Preparation of amino-functionalized CoFe2O4@SiO2 magnetic nanocomposites for potential application in absorbing heavy metal ions, RSC Advances, 6 (2016) 72479-72486.
[114] P. Xiong, L. Wang, X. Sun, B. Xu, X. Wang, Ternary Titania–Cobalt Ferrite–Polyaniline Nanocomposite: A Magnetically Recyclable Hybrid for Adsorption and Photodegradation of Dyes under Visible Light, Industrial & Engineering Chemistry Research, 52 (2013) 10105-10113.
[115] T. Jiang, Y.-d. Liang, Y.-j. He, Q. Wang, Activated carbon/NiFe2O4 magnetic composite: A magnetic adsorbent for the adsorption of methyl orange, Journal of Environmental Chemical Engineering, 3 (2015) 1740-1751.
[116] I. Khosravi, M. Eftekhar, Characterization and evaluation catalytic efficiency of NiFe2O4 nano spinel in removal of reactive dye from aqueous solution, Powder Technology, 250 (2013) 147-153.
[117] W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bieluń, U. Narkiewicz, Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles, Journal of Colloid and Interface Science, 398 (2013) 152-160.
[118] F. Bagheban Shahri, A. Niazi, Synthesis of modified maghemite nanoparticles and its application for removal of Acridine Orange from aqueous solutions by using Box-Behnken design, Journal of Magnetism and Magnetic Materials, 396 (2015) 318-326.
[119] D. Chen, Z. Zeng, Y. Zeng, F. Zhang, M. Wang, Removal of methylene blue and mechanism on magnetic γ-Fe2O3/SiO2 nanocomposite from aqueous solution, Water Resources and Industry, 15 (2016) 1-13.
[120] M.A. Shaker, Adsorption of Co(II), Ni(II) and Cu(II) ions onto chitosan-modified poly(methacrylate) nanoparticles: Dynamics, equilibrium and thermodynamics studies, Journal of the Taiwan Institute of Chemical Engineers, 57 (2015) 111-122.
[121] S.V. Bhosale, N.S. Kanhe, S.V. Bhoraskar, S.K. Bhat, R.N. Bulakhe, J.-J. Shim, V.L. Mathe, Micro-structural analysis of NiFe2O4 nanoparticles synthesized by thermal plasma route and its suitability for BSA adsorption, Journal of Materials Science: Materials in Medicine, 26 (2015) 216.
[122] P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties, Materials Letters, 65 (2011) 1438-1440.
[123] K. Chand Verma, V. Pratap Singh, M. Ram, J. Shah, R.K. Kotnala, Structural, microstructural and magnetic properties of NiFe2O4, CoFe2O4 and MnFe2O4 nanoferrite thin films, Journal of Magnetism and Magnetic Materials, 323 (2011) 3271-3275.
[124] A. Ren, C. Liu, Y. Hong, W. Shi, S. Lin, P. Li, Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures, Chemical Engineering Journal, 258 (2014) 301-308.
[125] T. Peng, X. Zhang, H. Lv, L. Zan, Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production, Catalysis Communications, 28 (2012) 116-119.
[126] L.-X. Yang, R.-C. Jin, Y. Liang, F. Wang, P. Yin, C.-Y. Yi, Preparation and magnetic properties of NiFe2O4–Fe2O3@SnO2 heterostructures, Materials Letters, 153 (2015) 55-58.
[127] M. Su, C. He, V.K. Sharma, M. Abou Asi, D. Xia, X.Z. Li, H. Deng, Y. Xiong, Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light, J Hazard Mater, 211-212 (2012) 95-103.
[128] N.M. Mahmoodi, Zinc ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation, Materials Research Bulletin, 48 (2013) 4255-4260.
[129] X. Guo, H. Zhu, Q. Li, Visible-light-driven photocatalytic properties of ZnO/ZnFe2O4 core/shell nanocable arrays, Applied Catalysis B: Environmental, 160-161 (2014) 408-414.
[130] E.I. Madukasi, X. Dai, C. He, J. Zhou, Potentials of phototrophic bacteria in treating pharmaceutical wastewater, International Journal of Environmental Science & Technology, 7 (2010) 165-174.
[131] G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chemical Engineering Journal, 217 (2013) 119-128.
[132] E. Marti, E. Variatza, J.L. Balcazar, The role of aquatic ecosystems as reservoirs of antibiotic resistance, Trends in Microbiology, 22 (2014) 36-41.
[133] G.Z. Kyzas, J. Fu, N.K. Lazaridis, D.N. Bikiaris, K.A. Matis, New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials, Journal of Molecular Liquids, 209 (2015) 87-93.
[134] F.J. Rivas, O. Gimeno, T. Borallho, Aqueous pharmaceutical compounds removal by potassium monopersulfate. Uncatalyzed and catalyzed semicontinuous experiments, Chemical Engineering Journal, 192 (2012) 326-333.
[135] R. Liang, S. Luo, F. Jing, L. Shen, N. Qin, L. Wu, A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs), Applied Catalysis B: Environmental, 176-177 (2015) 240-248.
[136] T. Chatzimitakos, C. Binellas, K. Maidatsi, C. Stalikas, Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals, Analytica Chimica Acta, 910 (2016) 53-59.
[137] Z. Xiong, L. Zhang, R. Zhang, Y. Zhang, J. Chen, W. Zhang, Solid-phase extraction based on magnetic core–shell silica nanoparticles coupled with gas chromatography-mass spectrometry for the determination of low concentration pesticides in aqueous samples, Journal of Separation Science, 35 (2012) 2430-2437.
[138] Z. He, P. Wang, D. Liu, Z. Zhou, Hydrophilic–lipophilic balanced magnetic nanoparticles: Preparation and application in magnetic solid-phase extraction of organochlorine pesticides and triazine herbicides in environmental water samples, Talanta, 127 (2014) 1-8.
[139] J.S. Suleiman, B. Hu, H. Peng, C. Huang, Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES, Talanta, 77 (2009) 1579-1583.
[140] G.R. Chaudhary, P. Saharan, A. Kumar, S.K. Mehta, S. Mor, A. Umar, Adsorption Studies of Cationic, Anionic and Azo-Dyes via Monodispersed Fe3O4 Nanoparticles, Journal of Nanoscience and Nanotechnology, 13 (2013) 3240-3245.
[141] K.-S. Lin, K. Dehvari, Y.-J. Liu, H. Kuo, P.-J. Hsu, Synthesis and Characterization of Porous Zero-Valent Iron Nanoparticles for Remediation of Chromium-Contaminated Wastewater, Journal of Nanoscience and Nanotechnology, 13 (2013) 2675-2681.
[142] N.M. Mahmoodi, Manganese ferrite nanoparticle: Synthesis, characterization, and photocatalytic dye degradation ability, Desalination and Water Treatment, 53 (2015) 84-90.
[143] N. Sezgin, A. Yalçın, Y. Köseoğlu, MnFe2O4 nano spinels as potential sorbent for adsorption of chromium from industrial wastewater, Desalination and Water Treatment, 57 (2016) 16495-16506.
[144] J. Liao, Z. Wen, X. Ru, J. Chen, H. Wu, C. Wei, Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China, Ecotoxicology and Environmental Safety, 124 (2016) 460-469.
[145] Y.-J. Tu, C.-F. You, C.-K. Chang, Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles, Journal of Hazardous Materials, 235-236 (2012) 116-122.
[146] V. Srivastava, T. Kohout, M. Sillanpää, Potential of cobalt ferrite nanoparticles (CoFe2O4) for remediation of hexavalent chromium from synthetic and printing press wastewater, Journal of Environmental Chemical Engineering, 4 (2016) 2922-2932.
[147] J. Zhu, S. Wei, H. Gu, S.B. Rapole, Q. Wang, Z. Luo, N. Haldolaarachchige, D.P. Young, Z. Guo, One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal, Environmental Science & Technology, 46 (2012) 977-985.
[148] B. Qiu, Y. Wang, D. Sun, Q. Wang, X. Zhang, B.L. Weeks, R. O’Connor, X. Huang, S. Wei, Z. Guo, Cr(vi) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures, Journal of Materials Chemistry A, 3 (2015) 9817-9825.
[149] S. Lata, P.K. Singh, S.R. Samadder, Regeneration of adsorbents and recovery of heavy metals: a review, International Journal of Environmental Science and Technology, 12 (2015) 1461-1478.
[150] J.-L. Kuang, L.-N. Huang, L.-X. Chen, Z.-S. Hua, S.-J. Li, M. Hu, J.-T. Li, W.-S. Shu, Contemporary environmental variation determines microbial diversity patterns in acid mine drainage, The ISME Journal, 7 (2013) 1038-1050.
[151] J. Song, H. Kong, J. Jang, Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles, Journal of Colloid and Interface Science, 359 (2011) 505-511.
[152] N. Jordan, A. Ritter, H. Foerstendorf, A.C. Scheinost, S. Weiß, K. Heim, J. Grenzer, A. Mücklich, H. Reuther, Adsorption mechanism of selenium(VI) onto maghemite, Geochimica et Cosmochimica Acta, 103 (2013) 63-75.
[153] M. Vinceti, C.M. Crespi, F. Bonvicini, C. Malagoli, M. Ferrante, S. Marmiroli, S. Stranges, The need for a reassessment of the safe upper limit of selenium in drinking water, Science of The Total Environment, 443 (2013) 633-642.
[154] Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured Iron Oxide/Hydroxide-Based Electrode Materials for Supercapacitors, ChemNanoMat, 2 (2016) 588-600.
[155] M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications, Journal of the Iranian Chemical Society, 7 (2010) 1-37.
[156] A.-H. Lu, E.L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition, 46 (2007) 1222-1244.
[157] F.S.G. Einschlag, L. Carlos, Waste Water: Treatment Technologies and Recent Analytical Developments, BoD–Books on Demand, 2013.
[158] M. Kumar, H. Singh Dosanjh, Sonika, J. Singh, K. Monir, H. Singh, Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications, Environmental Science: Water Research & Technology, 6 (2020) 491-514.
[159] U. Lamdab, K. Wetchakun, W. Kangwansupamonkon, N. Wetchakun, Effect of a pH-controlled co-precipitation process on rhodamine B adsorption of MnFe 2 O 4 nanoparticles, RSC advances, 8 (2018) 6709-6718.
[160] D.H.K. Reddy, S.-M. Lee, Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions, Advances in Colloid and Interface Science, 201-202 (2013) 68-93.
[161] S. Kulkarni, J. Kaware, Regeneration and recovery in adsorption-a review, International Journal of Innovative Science, Engineering & Technology, 1 (2014) 61-64.
[162] G. Busch, Biogas Technology, in: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, pp. 279-292.