Recent Advances in Processing, Characterizations and Biomedical Applications of Spinel Ferrite Nanoparticles


Recent Advances in Processing, Characterizations and Biomedical Applications of Spinel Ferrite Nanoparticles

Gaurav Katoch, Garima Rana, M. Singh, Alberto García-Peñas, Sumit Bhardwaj, Indu Sharma, Pankaj Sharma, Gagan Kumar

Many researchers are interested in investigating ceramic materials because of the potential for their use in nanotechnology. Spinel ferrites are a diverse group of materials with many applications. Electronic devices such as inductors, power, information storage, microwave, and induction tuners are only a few examples. As ferrite materials exhibit super-paramagnetic activity, their potential for biological applications such as drug delivery, hyperthermia, and resonance magnetic imaging. As a result, super-paramagnetism is a highly desirable property in spinel ferrites. Due to the size dependence, the methodologies used to synthesis of these materials have emerged as a critical step in achieving the desired properties. Many synthesis strategies have been developed in this regard such as sol-gel, co-precipitation, solid-state, solution combustion method and so on. As a result, this study provides a historical overview of spinel ferrites, as well as key principles for comprehending their various characterization techniques and properties. Recent developments in the synthesis and applications of spinel ferrites are also discussed.

Spinel Structure, Synthesis Routes, Characterization, Biomedical Applications

Published online , 59 pages

Citation: Gaurav Katoch, Garima Rana, M. Singh, Alberto García-Peñas, Sumit Bhardwaj, Indu Sharma, Pankaj Sharma, Gagan Kumar, Recent Advances in Processing, Characterizations and Biomedical Applications of Spinel Ferrite Nanoparticles, Materials Research Foundations, Vol. 112, pp 62-120, 2021


Part of the book on Ferrite

[1] Z. Yan, J. Gao, Y. Li, M. Zhang, M. Guo, Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite, RSC Advances, 5 (2015) 92778-92787.
[2] R.T. Olsson, G. Salazar-Alvarez, M.S. Hedenqvist, U.W. Gedde, F. Lindberg, S.J. Savage, Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles, Chemistry of Materials, 17 (2005) 5109-5118.
[3] A.H. Latham, M.E. Williams, Controlling transport and chemical functionality of magnetic nanoparticles, Accounts of chemical research, 41 (2008) 411-420.
[4] H. El Moussaoui, T. Mahfoud, S. Habouti, K. El Maalam, M.B. Ali, M. Hamedoun, O. Mounkachi, R. Masrour, E. Hlil, A. Benyoussef, Synthesis and magnetic properties of tin spinel ferrites doped manganese, Journal of magnetism and magnetic materials, 405 (2016) 181-186.
[5] D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chemical engineering journal, 129 (2007) 51-65.
[6] M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1-x) Fe2O4;(M= Zn, Cu and Mn; x= 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples, Materials Science and Engineering: C, 92 (2018) 644-656.
[7] S. Hilpert, V. Verf, Genetische und konstitutive Zusammenhänge in den magnetischen Eigenschaften bei Ferriten und Eisenoxyden, Berichte der deutschen chemischen Gesellschaft, 42 (1909) 2248-2261.
[8] Y. Kato, T. Takei, Characteristics of metallic oxide magnetic, Journal of the Institute Eletronic Engineering of Japan, 53 (1933) 408-412.
[9] W.S. Galvão, D. Neto, R.M. Freire, P.B. Fechine, Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications, in: solid state phenomena, Trans Tech Publ, 2016, pp. 139-176.
[10] L. Néel, Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites, Ann. géophys., 5 (1949) 99-136.
[11] M. Sugimoto, The past, present, and future of ferrites, Journal of the American Ceramic Society, 82 (1999) 269-280.
[12] E. Albers‐Schoenberg, Ferrites for microwave circuits and digital computers, Journal of Applied Physics, 25 (1954) 152-154.
[13] A. Bobeck, Properties and device applications of magnetic domains in orthoferrites, The bell system technical journal, 46 (1967) 1901-1925.
[14] A. Bobeck, R. Fischer, A. Perneski, J. Remeika, L. Van Uitert, Application of orthoferrites to domain-wall devices, IEEE Transactions on Magnetics, 5 (1969) 544-553.
[15] J. Dillon Jr, E. Gyorgy, J. Remeika, Photoinduced magnetic anisotropy and optical dichroism in silicon-doped yttrium iron garnet, Physical Review Letters, 22 (1969) 643.
[16] C.L. Hogan, The ferromagnetic Faraday effect at microwave frequencies and its applications: the microwave gyrator, The Bell System Technical Journal, 31 (1952) 1-31.
[17] C. Walcott, J.L. Gould, J. Kirschvink, Pigeons have magnets, Science, 205 (1979) 1027-1029.
[18] J.L. Gould, J. Kirschvink, K. Deffeyes, Bees have magnetic remanence, Science, 201 (1978) 1026-1028.
[19] R.B. Frankel, R.P. Blakemore, R.S. Wolfe, Magnetite in freshwater magnetotactic bacteria, Science, 203 (1979) 1355-1356.
[20] K.J. Widder, A.E. Senyei, D.G. Scarpelli, Magnetic microspheres: a model system for site specific drug delivery in vivo, Proceedings of the Society for Experimental Biology and Medicine, 158 (1978) 141-146.
[21] R. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective inductive heating of lymph nodes, Annals of surgery, 146 (1957) 596.
[22] P. Fannin, Measurement of the Neel relaxation of magnetic particles in the frequency range 1 kHz to 160 MHz, Journal of Physics D: Applied Physics, 24 (1991) 76.
[23] A.H. Lu, E.e.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angewandte Chemie International Edition, 46 (2007) 1222-1244.
[24] B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications, International journal of molecular sciences, 14 (2013) 21266-21305.
[25] K.L. Pisane, E.C. Despeaux, M.S. Seehra, Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles, Journal of Magnetism and Magnetic Materials, 384 (2015) 148-154.
[26] S. Ruta, R. Chantrell, O. Hovorka, Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles, Scientific reports, 5 (2015) 1-7.
[27] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, Journal of physics D: Applied physics, 36 (2003) R182.
[28] R.J. Hill, J.R. Craig, G. Gibbs, Systematics of the spinel structure type, Physics and chemistry of minerals, 4 (1979) 317-339.
[29] V.G. Harris, Modern microwave ferrites, IEEE Transactions on Magnetics, 48 (2011) 1075-1104.
[30] W. Bragg, The structure of magnetite and the spinels, Nature, 95 (1915) 561-561.
[31] B. Cullity, C. Graham, Introduction to Magnetic Materials, A John Wiley & Sons, Inc., Hoboken, New Jersey, (2009) 361.
[32] T. Tatarchuk, M. Bououdina, N. Paliychuk, I. Yaremiy, V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites, Journal of Alloys and Compounds, 694 (2017) 777-791.
[33] M.P. Leal, S. Rivera-Fernández, J.M. Franco, D. Pozo, M. Jesús, M.L. García-Martín, Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging, Nanoscale, 7 (2015) 2050-2059.
[34] G. Manjari, Green synthesis of silver and copper nanoparticles using Aglaia elaeagnoidea and its catalytic application on dye degradation, in, Department of Ecology and Environmental Sciences, Pondicherry University, 2018.
[35] M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism, Ceramics International, 43 (2017) 540-548.
[36] S. Singh, C. Srinivas, B. Tirupanyam, C. Prajapat, M. Singh, S. Meena, P. Bhatt, S. Yusuf, D. Sastry, Structural, thermal and magnetic studies of MgxZn1− xFe2O4 nanoferrites: study of exchange interactions on magnetic anisotropy, Ceramics International, 42 (2016) 19179-19186.
[37] A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method, Journal of magnetism and magnetic materials, 349 (2014) 249-258.
[38] A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, optical and magnetic properties of Zn1− xCuxFe2O4 nanoparticles prepared by microwave combustion method, Journal of molecular structure, 1035 (2013) 332-340.
[39] V.J. Angadi, A. Anupama, H.K. Choudhary, R. Kumar, H. Somashekarappa, M. Mallappa, B. Rudraswamy, B. Sahoo, Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0. 5Zn0. 5Fe2O4 ceramics, Journal of Solid State Chemistry, 246 (2017) 119-124.
[40] S. Jesudoss, J.J. Vijaya, L.J. Kennedy, P.I. Rajan, H.A. Al-Lohedan, R.J. Ramalingam, K. Kaviyarasu, M. Bououdina, Studies on the efficient dual performance of Mn1–xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity, Journal of Photochemistry and Photobiology B: Biology, 165 (2016) 121-132.
[41] R. Kumar, M. Kar, Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite, Ceramics International, 42 (2016) 6640-6647.
[42] M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2− xO4 ferrite nano-crystallites synthesized by sol-gel route, Journal of Magnetism and Magnetic Materials, 466 (2018) 238-251.
[43] S. Gul, M.A. Yousuf, A. Anwar, M.F. Warsi, P.O. Agboola, I. Shakir, M. Shahid, Al-substituted zinc spinel ferrite nanoparticles: Preparation and evaluation of structural, electrical, magnetic and photocatalytic properties, Ceramics International, 46 (2020) 14195-14205.
[44] I.P. Muthuselvam, R. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains, Journal of Magnetism and Magnetic Materials, 322 (2010) 767-776.
[45] C. Srinivas, B. Tirupanyam, S. Meena, S. Yusuf, C.S. Babu, K. Ramakrishna, D. Potukuchi, D. Sastry, Structural and magnetic characterization of co-precipitated NixZn1− xFe2O4 ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 407 (2016) 135-141.
[46] R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, Magnetic properties of Co1− xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling, Journal of Magnetism and Magnetic Materials, 378 (2015) 190-199.
[47] S. Prasad, M. Deepty, P. Ramesh, G. Prasad, K. Srinivasarao, C. Srinivas, K.V. Babu, E.R. Kumar, N.K. Mohan, D. Sastry, Synthesis of MFe2O4 (M= Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties, Ceramics International, 44 (2018) 10517-10524.
[48] M. Gabal, R.M. El-Shishtawy, Y. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor, Journal of Magnetism and Magnetic Materials, 324 (2012) 2258-2264.
[49] M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce 3+ substituted nickel ferrite, Journal of Materials Science: Materials in Electronics, 29 (2018) 15006-15021.
[50] B.P. Jacob, S. Thankachan, S. Xavier, E. Mohammed, Effect of Gd3+ doping on the structural and magnetic properties of nanocrystalline Ni–Cd mixed ferrite, Physica Scripta, 84 (2011) 045702.
[51] M. Junaid, M.A. Khan, M.N. Akhtar, A. Hussain, M.F. Warsi, Impact of indium substitution on dielectric and magnetic properties of Cu0. 5Ni0. 5Fe2-xO4 ferrite materials, Ceramics International, 45 (2019) 13431-13437.
[52] A. Thakur, P. Thakur, J.-H. Hsu, Structural, Magnetic and Electromagnetic Characterization of In3+ Substituted Mn-Zn Nanoferrites, Zeitschrift für Physikalische Chemie, 228 (2014) 663-672.
[53] H. Anwar, A. Maqsood, Effect of sintering temperature on structural, electrical and dielectric parameters of Mn-Zn nano ferrites, in: Key Engineering Materials, Trans Tech Publ, 2012, pp. 163-170.
[54] C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernández-García, A. Guedes, P.B. Tavares, J.-M. Grenèche, J.o.P. Araújo, Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route, Chemistry of Materials, 24 (2012) 1496-1504.
[55] H. Ni, Z. Gao, X. Li, Y. Xiao, Y. Wang, Y. Zhang, Synthesis and characterization of CuFeMnO4 prepared by co-precipitation method, Journal of Materials Science, 53 (2018) 3581-3589.
[56] K. Hoshi, H. Kato, T. Fukunaga, S. Furusawa, H. Sakurai, Synthesis of MnZn-Ferrite Using Coprecipitation Method, in: Key Engineering Materials, Trans Tech Publ, 2013, pp. 22-25.
[57] K. Velmurugan, V.S.K. Venkatachalapathy, S. Sendhilnathan, Synthesis of nickel zinc iron nanoparticles by coprecipitation technique, Materials Research, 13 (2010) 299-303.
[58] N. Kaur, M. Kaur, Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles, Processing and Application of Ceramics, 8 (2014) 137-143.
[59] A. Lungu, I. Malaescu, C. Marin, P. Vlazan, P. Sfirloaga, The electrical properties of manganese ferrite powders prepared by two different methods, Physica B: Condensed Matter, 462 (2015) 80-85.
[60] M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties, Journal of Magnetism and Magnetic Materials, 371 (2014) 43-48.
[61] Y. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana, Synthesis and characterization of some ferrite nanoparticles prepared by co-precipitation method, Journal of Materials Science: Materials in Electronics, 27 (2016) 12000-12008.
[62] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, Journal of Alloys and Compounds, 578 (2013) 235-241.
[63] S. Bhukal, S. Mor, S. Bansal, J. Singh, S. Singhal, Influence of Cd2+ ions on the structural, electrical, optical and magnetic properties of Co–Zn nanoferrites prepared by sol gel auto combustion method, Journal of Molecular Structure, 1071 (2014) 95-102.
[64] N. Sanpo, J. Wang, C.C. Berndt, Influence of chelating agents on the microstructure and antibacterial property of cobalt ferrite nanopowders, Journal of the Australian Ceramic Society, 49 (2013) 84-91.
[65] G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.-M. Han, C. Mahapatra, H.-W. Kim, J.C. Knowles, Sol–gel based materials for biomedical applications, Progress in Materials Science, 77 (2016) 1-79.
[66] A. Sutka, G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Frontiers of Materials Science, 6 (2012) 128-141.
[67] D.-H. Chen, X.-R. He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Materials Research Bulletin, 36 (2001) 1369-1377.
[68] R. Kadam, K. Desai, V.S. Shinde, M. Hashim, S.E. Shirsath, Influence of Gd3+ ion substitution on the MnCrFeO4 for their nanoparticle shape formation and magnetic properties, Journal of Alloys and Compounds, 657 (2016) 487-494.
[69] M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update, Arabian journal of Chemistry, 5 (2012) 397-417.
[70] A. Košak, D. Makovec, A. Žnidaršič, M. Drofenik, Preparation of MnZn-ferrite with microemulsion technique, Journal of the European Ceramic Society, 24 (2004) 959-962.
[71] K. Pemartin, C. Solans, J. Alvarez-Quintana, M. Sanchez-Dominguez, Synthesis of Mn–Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 451 (2014) 161-171.
[72] D.O. Yener, H. Giesche, Synthesis of Pure and Manganese‐, Nickel‐, and Zinc‐Doped Ferrite Particles in Water‐in‐Oil Microemulsions, Journal of the American Ceramic Society, 84 (2001) 1987-1995.
[73] V. Pillai, D. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions, Journal of Magnetism and Magnetic Materials, 163 (1996) 243-248.
[74] P. Holec, J. Plocek, D. Nižňanský, J.P. Vejpravová, Preparation of MgFe 2 O 4 nanoparticles by microemulsion method and their characterization, Journal of sol-gel science and technology, 51 (2009) 301-305.
[75] F. Grasset, N. Labhsetwar, D. Li, D. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite− silica core− shell nanoparticles, Langmuir, 18 (2002) 8209-8216.
[76] Y. Gao, Y. Zhao, Q. Jiao, H. Li, Microemulsion-based synthesis of porous Co–Ni ferrite nanorods and their magnetic properties, Journal of alloys and compounds, 555 (2013) 95-100.
[77] X. Gao, Y. Du, X. Liu, P. Xu, X. Han, Synthesis and characterization of Co–Sn substituted barium ferrite particles by a reverse microemulsion technique, Materials Research Bulletin, 46 (2011) 643-648.
[78] B.P. Jacob, A. Kumar, R. Pant, S. Singh, E. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles, Bulletin of Materials Science, 34 (2011) 1345-1350.
[79] P. Dhiman, J. Chand, S. Verma, Sarveena, M. Singh, Ni, Fe Co-doped ZnO nanoparticles synthesized by solution combustion method, AIP Conference Proceedings, 1591 (2014) 1443-1445.
[80] P. Dhiman, M. Patial, A. Kumar, M. Alam, M. Naushad, G. Sharma, D.-V.N. Vo, R. Kumar, Environmental friendly and robust Mg0.5-xCuxZn0.5Fe2O4 spinel nanoparticles for visible light driven degradation of Carbamazepine: Band shift driven by dopants, Materials Letters, 284 (2021) 129005.
[81] P. Dhiman, K.M. Batoo, R.K. Kotnala, J. Chand, M. Singh, Room temperature ferromagnetism and structural characterization of Fe,Ni co-doped ZnO nanocrystals, Applied Surface Science, 287 (2013) 287-292.
[82] C. Rao, J. Gopalakrishnan, E. Banks, New Directions in Solid State Chemistry: Structures, Synthesis, Properties, Reactivity and Materials Design, Physics Today, 41 (1988) 112.
[83] J. Chand, M. Singh, Electric and dielectric properties of MgGd0. 1Fe1. 9O4 ferrite, Journal of alloys and compounds, 486 (2009) 376-379.
[84] N. Chaibakhsh, Z. Moradi-Shoeili, Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): A review of synthesis, mechanism and potential applications, Materials Science and Engineering: C, 99 (2019) 1424-1447.
[85] T. Kundu, S. Mishra, Nanocrystalline spinel ferrites by solid state reaction route, Bulletin of Materials Science, 31 (2008) 507-510.
[86] S. Bera, A. Prince, S. Velmurugan, P. Raghavan, R. Gopalan, G. Panneerselvam, S. Narasimhan, Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS, Journal of materials science, 36 (2001) 5379-5384.
[87] V. Berbenni, C. Milanese, G. Bruni, A. Girella, A. Marini, Mechanothermal solid-state synthesis of cobalt (II) ferrite and determination of its heat capacity by MTDSC, Zeitschrift für Naturforschung B, 65 (2010) 1434-1438.
[88] E.N. Lysenko, E.V. Nikolaev, A.P. Surzhikov, TG study of the Li0. 4Fe2. 4Zn0. 2O4 ferrite synthesis, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016, pp. 012092.
[89] C. Sun, J.S. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Advanced drug delivery reviews, 60 (2008) 1252-1265.
[90] J. Wang, Y. Huang, A. E David, B. Chertok, L. Zhang, F. Yu, V. C Yang, Magnetic nanoparticles for MRI of brain tumors, Current pharmaceutical biotechnology, 13 (2012) 2403-2416.
[91] A. Rana, V. Kumar, O. Thakur, R. Pant, Structural and Electrical Properties of Gd3+ Ion Substituted CoGd x Fe2− x O4 Nano-Ferrites, Journal of nanoscience and nanotechnology, 12 (2012) 6355-6358.
[92] Y.-L. Liu, Z.-M. Liu, Y. Yang, H.-F. Yang, G.-L. Shen, R.-Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials, Sensors and Actuators B: Chemical, 107 (2005) 600-604.
[93] S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, S. Maensiri, Nanocrystalline spinel ferrite (MFe2O4, M= Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route, Materials Research Bulletin, 48 (2013) 2060-2065.
[94] N. Gupta, P. Jain, R. Rana, S. Shrivastava, Current development in synthesis and characterization of nickel ferrite nanoparticle, Materials Today: Proceedings, 4 (2017) 342-349.
[95] A. Šutka, R. Pärna, T. Käämbre, V. Kisand, Synthesis of p-type and n-type nickel ferrites and associated electrical properties, Physica B: Condensed Matter, 456 (2015) 232-236.
[96] Z. Zhu, X. Li, Q. Zhao, H. Li, Y. Shen, G. Chen, Porous “brick-like” NiFe2O4 nanocrystals loaded with Ag species towards effective degradation of toluene, Chemical Engineering Journal, 165 (2010) 64-70.
[97] D. Zhang, Z. Tong, G. Xu, S. Li, J. Ma, Templated fabrication of NiFe2O4 nanorods: characterization, magnetic and electrochemical properties, Solid State Sciences, 11 (2009) 113-117.
[98] J. Wang, F. Ren, R. Yi, A. Yan, G. Qiu, X. Liu, Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles, Journal of Alloys and Compounds, 479 (2009) 791-796.
[99] Z. Gao, F. Cui, S. Zeng, L. Guo, J. Shi, A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property, Microporous and mesoporous materials, 132 (2010) 188-195.
[100] M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method, Powder Technology, 212 (2011) 80-88.
[101] A. Baykal, N. Kasapoğlu, Y. Köseoğlu, M.S. Toprak, H. Bayrakdar, CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization, Journal of Alloys and Compounds, 464 (2008) 514-518.
[102] R. Waldron, Infrared spectra of ferrites, Physical review, 99 (1955) 1727.
[103] V. Rathod, A. Anupama, R.V. Kumar, V. Jali, B. Sahoo, Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites, Vibrational Spectroscopy, 92 (2017) 267-272.
[104] D. Chaudhari, D. Choudhary, K. Rewatkar, Spinel Ferrite Nanoparticles: Synthesis, Characterization and Applications, (2020).
[105] Y.-j. Sun, Y.-f. Diao, H.-g. Wang, G. Chen, M. Zhang, M. Guo, Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co) Fe2O4 from low nickel matte, Ceramics International, 43 (2017) 16474-16481.
[106] K. Maaz, S. Karim, A. Mumtaz, S. Hasanain, J. Liu, J. Duan, Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route, Journal of Magnetism and Magnetic Materials, 321 (2009) 1838-1842.
[107] A. Abdeen, Dielectric behaviour in Ni–Zn ferrites, Journal of magnetism and magnetic materials, 192 (1999) 121-129.
[108] M.A. Yousuf, M.M. Baig, N.F. Al-Khalli, M.A. Khan, M.F.A. Aboud, I. Shakir, M.F. Warsi, The impact of yttrium cations (Y3+) on structural, spectral and dielectric properties of spinel manganese ferrite nanoparticles, Ceramics International, 45 (2019) 10936-10942.
[109] M. Dar, D. Varshney, Effect of d-block element Co2+ substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites, Journal of Magnetism and Magnetic Materials, 436 (2017) 101-112.
[110] M. Deepty, S. Ch, P. Ramesh, N.K. Mohan, M.S. Singh, C. Prajapat, A. Verma, D. Sastry, Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications, Sensors and Actuators B: Chemical, 316 (2020) 128127.
[111] G.F. Dionne, R.G. West, Magnetic and dielectric properties of the spinel ferrite system Ni0. 65Zn0. 35Fe2− x Mn x O4, Journal of Applied Physics, 61 (1987) 3868-3870.
[112] M. Ajmal, M.U. Islam, G.A. Ashraf, M.A. Nazir, M. Ghouri, The influence of Ga doping on structural magnetic and dielectric properties of NiCr0. 2Fe1. 8O4 spinel ferrite, Physica B: Condensed Matter, 526 (2017) 149-154.
[113] R. Kambale, N. Adhate, B. Chougule, Y. Kolekar, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method, Journal of Alloys and Compounds, 491 (2010) 372-377.
[114] R. Kambale, P. Shaikh, C. Bhosale, K. Rajpure, Y. Kolekar, The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion route, Smart Materials and structures, 18 (2009) 115028.
[115] E. Pervaiz, I. Gul, High frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: a novel electromagnetic material, Journal of magnetism and magnetic materials, 349 (2014) 27-34.
[116] M. Khan, S. Bisen, J. Shukla, A. Mishra, P. Sharma, Investigations on the Structural and Electrical Properties of Sm 3+-Doped Nickel Ferrite–Based Ceramics, Journal of Superconductivity and Novel Magnetism, (2020) 1-18.
[117] F. Alahmari, M. Almessiere, B. Ünal, Y. Slimani, A. Baykal, Electrical and optical properties of Ni0· 5Co0. 5-xCdxNd0. 02Fe1· 78O4 (x≤ 0.25) spinel ferrite nanofibers, Ceramics International, 46 (2020) 24605-24614.
[118] K.K. Bharathi, G. Markandeyulu, C. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm-and Ho-substituted nickel ferrites, The Journal of Physical Chemistry C, 115 (2011) 554-560.
[119] L. Chauhan, A. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion, Ceramics International, 41 (2015) 8341-8351.
[120] P. Chand, S. Vaish, P. Kumar, Structural, optical and dielectric properties of transition metal (MFe2O4; M= Co, Ni and Zn) nanoferrites, Physica B: Condensed Matter, 524 (2017) 53-63.
[121] R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method, Journal of Physics and Chemistry of Solids, 110 (2017) 87-99.
[122] M.F. Warsi, A. Iftikhar, M.A. Yousuf, M.I. Sarwar, S. Yousaf, S. Haider, M.F.A. Aboud, I. Shakir, S. Zulfiqar, Erbium substituted nickel–cobalt spinel ferrite nanoparticles: Tailoring the structural, magnetic and electrical parameters, Ceramics International, 46 (2020) 24194-24203.
[123] S. Ikram, J. Jacob, M.I. Arshad, K. Mahmood, A. Ali, N. Sabir, N. Amin, S. Hussain, Tailoring the structural, magnetic and dielectric properties of Ni-Zn-CdFe2O4 spinel ferrites by the substitution of lanthanum ions, Ceramics International, 45 (2019) 3563-3569.
[124] S. Kavitha, M. Kurian, Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles, Journal of Alloys and Compounds, 799 (2019) 147-159.
[125] A. Nikumbh, R. Pawar, D. Nighot, G. Gugale, M. Sangale, M. Khanvilkar, A. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method, Journal of Magnetism and Magnetic Materials, 355 (2014) 201-209.
[126] S. Mansour, M. Abdo, F. Kzar, Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu-Zn nanoferrites, Journal of Magnetism and Magnetic Materials, 465 (2018) 176-185.
[127] N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Structural, magnetic and dielectric properties of Ni0. 6Mg0. 4Fe2O4 ferromagnetic ferrite prepared by sol gel method, Ceramics International, 45 (2019) 16458-16465.
[128] A.B. Mugutkar, S.K. Gore, U.B. Tumberphale, V.V. Jadhav, R.S. Mane, S.M. Patange, S.F. Shaikh, M. Ubaidullah, A.M. Al-Enizi, S.S. Jadhav, The role of La3+ substitution in modification of the magnetic and dielectric properties of the nanocrystalline Co-Zn ferrites, Journal of Magnetism and Magnetic Materials, 502 (2020) 166490.
[129] A. Pandit, A. Shitre, D. Shengule, K. Jadhav, Magnetic and dielectric properties of Mg 1+ x Mn x, Fe 2− 2x, O 4 ferrite system, Journal of materials science, 40 (2005) 423-428.
[130] T.V. Sagar, T.S. Rao, K.C.B. Naidu, Effect of calcination temperature on optical, magnetic and dielectric properties of sol-gel synthesized Ni0. 2Mg0. 8-xZnxFe2O4 (x= 0.0–0.8), Ceramics International, 46 (2020) 11515-11529.
[131] N. Rezlescu, E. Rezlescu, L. Sachelarie, P. Popa, C. Doroftei, Structural and catalytic properties of mesoporous nanocrystalline mixed oxides containing magnesium, Catalysis Communications, 46 (2014) 51-56.
[132] X. Huang, J. Zhang, S. Xiao, T. Sang, G. Chen, Unique electromagnetic properties of the zinc ferrite nanofiber, Materials Letters, 124 (2014) 126-128.
[133] E.R. Kumar, R. Jayaprakash, G.S. Devi, P.S.P. Reddy, Synthesis of Mn substituted CuFe2O4 nanoparticles for liquefied petroleum gas sensor applications, Sensors and Actuators B: Chemical, 191 (2014) 186-191.
[134] Y. Liu, M. Yuan, L. Qiao, R. Guo, An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites, Biosensors and Bioelectronics, 52 (2014) 391-396.
[135] D. Ling, N. Lee, T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications, Accounts of chemical research, 48 (2015) 1276-1285.
[136] A. Yadollahpour, S. Rashidi, Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications, Orient J Chem, 31 (2015) 25-30.
[137] A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale research letters, 7 (2012) 1-13.
[138] D. Psimadas, G. Baldi, C. Ravagli, M.C. Franchini, E. Locatelli, C. Innocenti, C. Sangregorio, G. Loudos, Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores, Nanotechnology, 25 (2013) 025101.
[139] M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles, Chemical Society Reviews, 41 (2012) 4306-4334.
[140] H. Ersoy, F.J. Rybicki, Biochemical safety profiles of gadolinium‐based extracellular contrast agents and nephrogenic systemic fibrosis, Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 26 (2007) 1190-1197.
[141] L. Huang, L. Ao, W. Wang, D. Hu, Z. Sheng, W. Su, Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery, Chemical Communications, 51 (2015) 3923-3926.
[142] W. Lin, Introduction: nanoparticles in medicine, Chemical reviews, 115 (2015) 10407-10409.
[143] C.P. Slichter, Principles of magnetic resonance, Springer Science & Business Media, 2013.
[144] N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents, Chemical Society Reviews, 41 (2012) 2575-2589.
[145] Q. Pankhurst, N. Thanh, S. Jones, J. Dobson, Progress in applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, 42 (2009) 224001.
[146] C.G. Hadjipanayis, M.J. Bonder, S. Balakrishnan, X. Wang, H. Mao, G.C. Hadjipanayis, Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia, Small, 4 (2008) 1925-1929.
[147] S. Maenosono, T. Suzuki, S. Saita, Superparamagnetic FePt nanoparticles as excellent MRI contrast agents, Journal of Magnetism and Magnetic Materials, 320 (2008) L79-L83.
[148] T.-H. Shin, Y. Choi, S. Kim, J. Cheon, Recent advances in magnetic nanoparticle-based multi-modal imaging, Chemical Society Reviews, 44 (2015) 4501-4516.
[149] J.-H. Lee, Y.-M. Huh, Y.-w. Jun, J.-w. Seo, J.-t. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nature medicine, 13 (2007) 95-99.
[150] J. Gao, X. Chen, Z. Zhao, Octapod iron oxide nanoparticles as high performance T2 contrast agents for magnetic resonance imaging, in, Google Patents, 2018.
[151] V.V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, H. Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor, Applied Nanoscience, 4 (2014) 385-392.
[152] J. Estelrich, E. Escribano, J. Queralt, M.A. Busquets, Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery, International journal of molecular sciences, 16 (2015) 8070-8101.
[153] A.K. Hauser, R.J. Wydra, N.A. Stocke, K.W. Anderson, J.Z. Hilt, Magnetic nanoparticles and nanocomposites for remote controlled therapies, Journal of Controlled Release, 219 (2015) 76-94.
[154] H. Guo, W. Chen, X. Sun, Y.-N. Liu, J. Li, J. Wang, Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field, Carbohydrate polymers, 118 (2015) 209-217.
[155] D.C. Chan, D.B. Kirpotin, P.A. Bunn Jr, Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer, Journal of Magnetism and Magnetic Materials, 122 (1993) 374-378.
[156] A. Jordan, P. Wust, H. Fählin, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, International journal of hyperthermia, 9 (1993) 51-68.
[157] A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic materials, 201 (1999) 413-419.
[158] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, Journal of magnetism and magnetic materials, 225 (2001) 118-126.
[159] N. Kawai, A. Ito, Y. Nakahara, M. Futakuchi, T. Shirai, H. Honda, T. Kobayashi, K. Kohri, Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune‐response induction in transplanted syngeneic rats, The prostate, 64 (2005) 373-381.
[160] J.t. Jang, H. Nah, J.H. Lee, S.H. Moon, M.G. Kim, J. Cheon, Critical enhancements of MRI contrast and hyperthermic effects by dopant‐controlled magnetic nanoparticles, Angewandte Chemie International Edition, 48 (2009) 1234-1238.
[161] K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme, Journal of neuro-oncology, 81 (2007) 53-60.
[162] P. Wust, U. Gneveckow, P. Wust, U. Gneveckow, M. Johannsen, D. Böhmer, T. Henkel, F. Kahmann, J. Sehouli, R. Felix, Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures, International Journal of Hyperthermia, 22 (2006) 673-685.
[163] B. Thiesen, A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia, International journal of hyperthermia, 24 (2008) 467-474.
[164] J.-H. Lee, J.-t. Jang, J.-s. Choi, S.H. Moon, S.-h. Noh, J.-w. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nature nanotechnology, 6 (2011) 418-422.
[165] T. Sadhukha, T.S. Wiedmann, J. Panyam, Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy, Biomaterials, 34 (2013) 5163-5171.
[166] R. Di Corato, A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Ménager, F. Gazeau, C. Wilhelm, Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs, Biomaterials, 35 (2014) 6400-6411.
[167] O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Advanced drug delivery reviews, 62 (2010) 284-304.
[168] D. Singh, J.M. McMillan, X.-M. Liu, H.M. Vishwasrao, A.V. Kabanov, M. Sokolsky-Papkov, H.E. Gendelman, Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues, Nanomedicine, 9 (2014) 469-485.
[169] N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy, Chemical reviews, 115 (2015) 10637-10689.
[170] S.J. Mattingly, M.G. O’Toole, K.T. James, G.J. Clark, M.H. Nantz, Magnetic nanoparticle-supported lipid bilayers for drug delivery, Langmuir, 31 (2015) 3326-3332.
[171] Y. Ding, S.Z. Shen, H. Sun, K. Sun, F. Liu, Y. Qi, J. Yan, Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery, Materials Science and Engineering: C, 48 (2015) 487-498.
[172] Y. Chen, J. Nan, Y. Lu, C. Wang, F. Chu, Z. Gu, Hybrid Fe3O4-poly (acrylic acid) nanogels for theranostic cancer treatment, Journal of biomedical nanotechnology, 11 (2015) 771-779.
[173] Y. Yang, L. Yang, Q.-y. Sun, Archaeal and bacterial communities in acid mine drainage from metal-rich abandoned tailing ponds, Tongling, China, Transactions of Nonferrous Metals Society of China, 24 (2014) 3332-3342.
[174] B. Bahrami, M. Hojjat-Farsangi, H. Mohammadi, E. Anvari, G. Ghalamfarsa, M. Yousefi, F. Jadidi-Niaragh, Nanoparticles and targeted drug delivery in cancer therapy, Immunology letters, 190 (2017) 64-83.
[175] J.-M. Shen, X.-M. Guan, X.-Y. Liu, J.-F. Lan, T. Cheng, H.-X. Zhang, Luminescent/magnetic hybrid nanoparticles with folate-conjugated peptide composites for tumor-targeted drug delivery, Bioconjugate chemistry, 23 (2012) 1010-1021.
[176] C.A. Monnier, D. Burnand, B. Rothen-Rutishauser, M. Lattuada, A. Petri-Fink, Magnetoliposomes: opportunities and challenges, European Journal of Nanomedicine, 6 (2014) 201-215.
[177] G. Wang, Y. Ma, L. Zhang, J. Mu, Z. Zhang, X. Zhang, H. Che, Y. Bai, J. Hou, Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery, Journal of Magnetism and Magnetic Materials, 401 (2016) 647-650.
[178] Y. Teng, P.W. Pong, One-Pot Synthesis and Surface Modification of Lauric-Acid-Capped CoFe2O4 Nanoparticles, IEEE Transactions on Magnetics, 54 (2018) 1-5.
[179] T. Indira, P. Lakshmi, Magnetic nanoparticles–a review, International Journal of Pharmaceutical sciences and nanotechnology, 3 (2010) 1035-1042.
[180] Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation, Journal of Magnetism and Magnetic Materials, 361 (2014) 150-156.
[181] K.M. Krishnan, Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy, IEEE transactions on magnetics, 46 (2010) 2523-2558.
[182] H. Dong, S.-R. Du, X.-Y. Zheng, G.-M. Lyu, L.-D. Sun, L.-D. Li, P.-Z. Zhang, C. Zhang, C.-H. Yan, Lanthanide nanoparticles: from design toward bioimaging and therapy, Chemical reviews, 115 (2015) 10725-10815.
[183] H. Markides, M. Rotherham, A. El Haj, Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine, Journal of Nanomaterials, 2012 (2012).
[184] A. Koner, D. Krndija, Q. Hou, D. Sherratt, M. Howarth, Acs Nano 2013, 7, 1137–1144; b) AB Chinen, CM Guan, JR Ferrer, SN Barnaby, TJ Merkel, CA Mirkin, Chem. Rev, 115 (2015) 10530-10574.
[185] Z. Ma, H. Liu, Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine, China Particuology, 5 (2007) 1-10.
[186] A.B. Salunkhe, V.M. Khot, S. Pawar, Magnetic hyperthermia with magnetic nanoparticles: a status review, Current topics in medicinal chemistry, 14 (2014) 572-594.
[187] J. Lagendijk, Hyperthermia treatment planning, Physics in Medicine & Biology, 45 (2000) R61.
[188] A. Jordan, R. Scholz, K. Maier-Hauff, F.K. van Landeghem, N. Waldoefner, U. Teichgraeber, J. Pinkernelle, H. Bruhn, F. Neumann, B. Thiesen, The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, Journal of neuro-oncology, 78 (2006) 7-14.
[189] R. Gordon, J. Hines, D. Gordon, Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Medical hypotheses, 5 (1979) 83-102.
[190] N. Hamilton, The small-signal frequency response of ferrites, High frequency electronics, (2011) 36-52.
[191] T.-J. Liang, H.-H. Nien, J.-F. Chen, Investigating the characteristics of cobalt-substituted MnZn ferrites by equivalent electrical elements, IEEE transactions on magnetics, 43 (2007) 3816-3820.
[192] R. Sharma, P. Thakur, P. Sharma, V. Sharma, Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage, Journal of Alloys and Compounds, 704 (2017) 7-17.
[193] M. Pardavi-Horvath, Microwave applications of soft ferrites, Journal of Magnetism and Magnetic Materials, 215 (2000) 171-183.
[194] O. Mounkachi, R. Lamouri, B. Abraime, H. Ez-Zahraouy, A. El Kenz, M. Hamedoun, A. Benyoussef, Exploring the magnetic and structural properties of Nd-doped Cobalt nano-ferrite for permanent magnet applications, Ceramics International, 43 (2017) 14401-14404.
[195] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Advances in colloid and interface science, 209 (2014) 172-184.
[196] G. Sharma, A. Kumar, S. Sharma, M. Naushad, P. Dhiman, D.-V.N. Vo, F.J. Stadler, Fe3O4/ZnO/Si3N4 nanocomposite based photocatalyst for the degradation of dyes from aqueous solution, Materials Letters, 278 (2020) 128359.
[197] A. Kumar, G. Sharma, M. Naushad, A.a.H. Al-Muhtaseb, A. García-Peñas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review, Chemical Engineering Journal, 382 (2020) 122937.
[198] A. Kumar, S.K. Sharma, G. Sharma, C. Guo, D.-V.N. Vo, J. Iqbal, M. Naushad, F.J. Stadler, Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer, Journal of Hazardous Materials, 402 (2021) 123790.
[199] E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Separation and Purification Technology, 87 (2012) 1-14.
[200] P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D.-V.N. Vo, N. AlMasoud, M. Naushad, Z.A. Alothman, Robust magnetic ZnO-Fe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection, Environmental Research, 197 (2021) 111074.
[201] A. Kumar, G. Sharma, M. Naushad, T. Ahamad, R.C. Veses, F.J. Stadler, Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO, Chemical Engineering Journal, 370 (2019) 148-165.
[202] K. Harish, H.B. Naik, R. Viswanath, Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight, Catalysis Science & Technology, 2 (2012) 1033-1039.
[203] A. Di Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation, Journal of hazardous materials, 211 (2012) 3-29.
[204] N.M. Mahmoodi, Zinc ferrite nanoparticle as a magnetic catalyst: synthesis and dye degradation, Materials Research Bulletin, 48 (2013) 4255-4260.
[205] X. Guo, H. Zhu, Q. Li, Visible-light-driven photocatalytic properties of ZnO/ZnFe2O4 core/shell nanocable arrays, Applied Catalysis B: Environmental, 160 (2014) 408-414.
[206] P. Xiong, J. Zhu, X. Wang, Cadmium sulfide–ferrite nanocomposite as a magnetically recyclable photocatalyst with enhanced visible-light-driven photocatalytic activity and photostability, Industrial & Engineering Chemistry Research, 52 (2013) 17126-17133.
[207] P. Dhiman, N. Dhiman, A. Kumar, G. Sharma, M. Naushad, A.A. Ghfar, Solar active nano-Zn1− xMgxFe2O4 as a magnetically separable sustainable photocatalyst for degradation of sulfadiazine antibiotic, Journal of Molecular Liquids, 294 (2019) 111574.