Introduction to Bioinspired Nanomaterials


Introduction to Bioinspired Nanomaterials

Sangeetha Kumaravel, Prabaharan Thiruvengetam and Subrata Kundu

Nanomaterials (NMs) developed using biomolecules display numerous advantages which attract the science community to explore them for a wide range of applications. In this line, bio-scaffolds are studied as templates to form nano-bio heterojunctions in the nano confined materials. With the high flexibility of biomediated NMs, it is possible to develop desired size and shape selective NMs. Such bio-based NMs have great benefits in wide areas including catalysis, sensors and energy related applications particularly, electrocatalysis, supercapacitor, batteries etc. The viability of bio-scaffolds in developing metal superstructures makes them better choice in the medicinal fields. This book chapter mainly focused on the advantageous and challenges of bioinspired NMs in the medicinal field, particularly in drug delivery systems. Moreover, the synthetic methods such as enzyme catalyzed wet-chemical route, photo-irradiation and incubation methods were also discussed in detail. Also, this chapter gives a better understanding to the readers about the development of new nano-bio heterojunctions for medicine, energy and environmental fields. Moreover, the morphological features of nano-bio interactions at nanoscale level show predominant activity particularly in Surface Enhanced Raman Scattering (SERS) and sensor applications. With the knowledge gained from this chapter, in futuristic, one can go for the development of new metal nanostructures with different bio-scaffolds such as microorganisms, viruses, DNA and protein to mainstream applications for the medicinal fields.

Nanomaterials, Biomolecules, Enzymatic, Non-Enzymatic, Bacteria DNA, Proteins, Viruses, Cell Wall, Wet-Chemical Method, Incubation, Photoreduction, Catalysis, Sensor, Disinfection, Electrocatalysis, Supercapacitor

Published online 8/10/2021, 35 pages

Citation: Sangeetha Kumaravel, Prabaharan Thiruvengetam and Subrata Kundu, Introduction to Bioinspired Nanomaterials, Materials Research Foundations, Vol. 111, pp 1-35, 2021


Part of the book on Bioinspired Nanomaterials

[1] M.F.H. Jr, D.W. Mogk, J. Ranville, I.C. Allen, G.W. Luther, L.C. Marr, B.P. Mcgrail, M. Murayama, N.P. Qafoku, K.M. Rosso, N. Sahai, P.A. Schroeder, P. Vikesland, P. Westerhoff, Y. Yang, Natural, incidental, and engineered nanomaterials and their impacts on the Earth system, Science. 363 (2019) 6434.
[2] J.R. Heath, Nanoscale Materials, Acc. Chem. Res. 32 (1999) 388
[3] C. Aur, T. Nesma, P. Juanes-velasco, A. Landeira-viñuela, H. Fidalgo-gomez, V. Acebes-fernandez, R. Gongora, A. Parra, R. Manzano-roman, M. Fuentes, Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine, Nanomaterials. 9 (2019) 1365
[4] C.M. Niemeyer, Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science, Angew. Chem. Int. Ed. 40 (2001) 4128 – 4158
[5] H. Hosein, D.R. Strongin, T. Douglas, K. Rosso, A Bioengineering Approach to the Production of Metal and Metal Oxide Nanoparticles, 2005
[6] A.R. Tao, S. Habas, P. Yang, Shape Control of Colloidal Metal Nanocrystals, Small. 4 (2008) 310–325.
[7] C. Contado, Nanomaterials in consumer products: a challenging analytical problem, Front. Chem. 3 (2015) 48.
[8] X. Xu, Y. Jian, Y. Li, X. Zhang, Z. Tu, Z. Gu, Bio-Inspired Supramolecular Hybrid Dendrimers Self-Assembled from Low-Generation Peptide Dendrons for Highly E ffi cient Gene Delivery and Biological Tracking, ACS Nano. 8 (2014) 9255–9264
[9] M.C. Roco, C.A. Mirkin, M.C. Hersam, Nanotechnology research directions for societal needs in 2020 : summary of international study, J Nanopart Res. (2011) 897–919.
[10] T.L. Theis, S. Ghosh, Toward Sustainable Nanoproducts, J. Ind. Ecol. 12 (2008) 329–359.
[11] R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem.Soc.Rev. 38 (2009) 481–494.
[12] M.J. Gallagher, a J.T.B. Caley Allen, T.A. Qiu, P.L. Clement, O.P. Krause, L.M. Gilbertson, Research highlights: applications of life-cycle assessment as a tool for characterizing environmental impacts of engineered nanomaterials, Environ. Sci. Nano. 4 (2017) 276–281.
[13] M.P. Tsang, E. Kikuchi-uehara, G.W. Sonnemann, C. Aymonier, M. Hirao, Evaluating nanotechnology opportunities and risks through integration of life-cycle and risk assessment, Nat. Nanotechnol. 12 (2017) 734.
[14] C.J. Murphy, Sustainability as an emerging design criterion in nanoparticle synthesis and applications, J. Mater. Chem. 18 (2008) 2173–2176.
[15] M.J. Eckelman, J.B. Zimmerman, P.T. Anastas, Toward Green Nano Syntheses E-factor Analysis of Several Nanomaterial Syntheses, J. Ind. Ecol. 12 (2008) 316–328.
[16] M. Razavi, Bio-based nanostructured materials, Elsevier Ltd., 2018.
[17] J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications, Chem.Soc.Rev. 44 (2015) 6330–6374.
[18] J.E. Hutchison, Greener Nanoscience: A Proactive Approach to Advancing Applications and Reducing Implications of Nanotechnology, ACS Nano. 2 (2008) 395–402
[19] M. Romero-franco, H.A. Godwin, M. Bilal, Y. Cohen, Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs), Beilstein J. Nanotechnol. 8 (2017) 989–1014.
[20] J.-L. Wang, J.-W. Liu, S.-H. Yu, Recycling Valuable Elements from Chemical Synthesis Process of Nanomaterials: A Sustainable View, ACS Mater. Lett. 5 (2019) 541–548.
[21] L.M. Gilbertson, J.B. Zimmerman, D.L. Plata, J.E. Hutchison, P.T. Anastas, Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry, Chem. Soc. Rev. 16 (2015) 5758–5777.
[22] K.D. Gilroy, A. Ruditskiy, H. Peng, D. Qin, Y. Xia, Bimetallic Nanocrystals: Syntheses, Properties, and Applications, Chem. Rev. 116 (2016) 10414−10472.
[23] P.C. Ke, R. Qiao, Carbon nanomaterials in biological systems, J. Phys. Condens. Matter. 19 (2007) 373101.
[24] A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M. V Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano–bio interface, Nat. Mater. 8 (2009) 543–557.
[25] C. Sanchez, H. Arribart, M.M.G. Guille, G. Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nat. Mater. 4 (2005) 277–288
[26] M. Sarikaya, C. Tamerler, A.K. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology, Nat. Mater. 2 (2003) 577–585
[27] R. Peter, Continuous Biopahrma Manufacturing, BioPharm Int. 28 (2015) 1–56
[28] M. Ding, G. Chen, W. Xu, C. Jia, H. Luo, Nano Materials Science Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion, Nano Mater. Sci. 11 (2019) 1–17.
[29] P. Mohanpuria, K.N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J Nanopart Res. 10 (2008) 507–517.
[30] X. Li, H. Xu, Z. Chen, G. Chen, Biosynthesis of Nanoparticles by Microorganisms and Their Applications, J. Nanomater. 2011 (2011) 270974.
[31] A. Fariq, T. Khan, A. Yasmin, Microbial synthesis of nanoparticles and their potential applications in biomedicine, J. Appl. Biomed. 15 (2017) 241–248.
[32] X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli, Chemosphere Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere. 82 (2011) 489–494.
[33] I.W. Lin, C. Lok, C. Che, Biosynthesis of silver nanoparticles from silver(I) reduction by the periplasmic nitrate reductase c- type cytochrome subunit NapC in a silver-resistant E. coli, Chem. Sci. 5 (2014) 3144–3150.
[34] S.K. Das, J. Liang, M. Schmidt, F. Laffir, E. Marsili, Biomineralization Mechanism of Gold by Zygomycete Fungi Rhizopous oryzae, ACS Nano. 7 (2012) 6165–6173
[35] R. Ramanathan, A.P.O. Mullane, R.Y. Parikh, P.M. Smooker, S.K. Bhargava, V. Bansal, Bacterial Kinetics-Controlled Shape-Directed Biosynthesis of Silver Nanoplates Using Morganella psychrotolerans, Langmuir 2011,. 27 (2011) 714–719.
[36] B. Nair, T. Pradeep, Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains, Cryst. Growth Des. 4 (2002) 293–298
[37] M.E. Bayer, M.H. Bayer, Lanthanide Accumulation in the Periplasmic Space of Escherichia coli B, J. Bacteriol. 173 (1991) 141–149
[38] M.I. Husseiny, M.A. El-aziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 67 (2007) 1003–1006.
[39] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P. V Ajaykumar, M. Alam, R. Kumar, M. Sastry, Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis, Nano Lett. 1 (2001) 515–519.
[40] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, M. Sastry, Extracellular biosynthesis of sil v er nanoparticles using the fungus Fusarium oxysporum, Colloids Surfaces B Biointerfaces. 28 (2003) 313–318
[41] K. Sangeetha, S.S. Sankar, K. Karthick, S. Anantharaj, S.R. Ede, S. Wilson T., S. Kundu, Synthesis of ultra-small Rh nanoparticles congregated over DNA for catalysis and SERS applications, Colloids Surfaces B Biointerfaces. 173 (2019) 249–257.
[42] M. Kowshik, S. Ashtaputre, S. Kharrazi, WVogel, J. Urban, S.K. Kulkarni, K. Paknikar, Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotechnology. 14 (2003) 95–100
[43] H. Chen, J. Huang, D. Huang, D. Sun, M. Shao, Q. Li, Novel AuPd nanostructures for hydrogenation of 1,3-butadiene, J. Mater. Chem. A. 3 (2015) 4846–4854.
[44] E. Dujardin, C. Peet, G. Stubbs, J.N. Culver, S. Mann, Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates, Nano Lett. 3 (2003) 413–417
[45] A.K. Manocchi, N.E. Horelik, B. Lee, H. Yi, Simple, Readily Controllable Palladium Nanoparticle Formation on Surface- Assembled Viral Nanotemplates, Langmuir. 26 (2010) 3670–3677.
[46] A. Merzlyak, S. Indrakanti, S. Lee, Genetically Engineered Nanofiber-Like Viruses For Tissue Regenerating Materials, Nano Lett. 2 (2009) 846–852
[47] M. Knez, A.M. Bittner, F. Boes, C. Wege, H. Jeske, E. Mai, K. Kern, Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires, Nano Lett. 3 (2003) 1079–1082
[48] S. Balci, K. Hahn, P. Kopold, A. Kadri, C. Wege, K. Kern1, A.M. Bittner, Electroless synthesis of 3 nm wide alloy nanowires inside Tobacco mosaic virus, Nanotechnology. 23 (2012) 45603.
[49] A.A.A. Aljabali, J.E. Barclay, O. Cespedes, A. Rashid, S.S. Staniland, G.P. Lomonossoff, D.J. Evans, Charge Modifi ed Cowpea Mosaic Virus Particles for Templated Mineralization, Adv. Funct. Mater. 2011,. 21 (2011) 4137–4142.
[50] A.K. Manocchi, S. Seifert, B. Lee, H. Yi, In Situ Small-Angle X-ray Scattering Analysis of Palladium Nanoparticle Growth on Tobacco Mosaic Virus Nanotemplates, Langmuir 2011,. 27 (2011) 7052–7058
[51] C. Lin, Y. Liu, S. Rinker, H. Yan, DNA Tile Based Self-Assembly: Building Complex Nanoarchitectures, ChemPhysChem. 7 (2006) 1641–1647.
[52] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature. 391 (1998) 775-778
[53] Z. Kang, X. Yan, Y. Zhang, J. Pan, J. Shi, X. Zhang, Y. Liu, J.H. Choi, D.M. Porterfiel, Single-Stranded DNA Functionalized Single-Walled Carbon Nanotubes for Microbiosensors via Layer-by-Layer Electrostatic Self- Assembly, ACS Appl. Mater. Interfaces. 6 (2014) 3784−3789
[54] Z. Chen, C. Liu, F. Cao, J. Ren, X. Qu, DNA metallization: principles, methods, structures, and applications, Chem. Soc. Rev. 47 (2018) 4017–4072.
[55] O.I. Wilner, I. Willner, Functionalized DNA Nanostructures, Chem. Rev. 112 (2012) 2528–2556
[56] N.C. Seeman, Nucleic Acid Junctions and Lattices, J. Theor. Biol. 99 (1982) 237–247
[57] J.D. Moroz, P. Nelson, Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. 94 (1997) 14418–14422
[58] S. Kumaravel, P. Thiruvengetam, S.R. Ede, K. Karthick, S. Anantharaj, S.S. Sankar, S. Kundu, Cobalt tungsten oxide hydroxide hydrate (CTOHH) on DNA scaffold: an excellent bi-functional catalyst for oxygen evolution reaction (OER) and aromatic alcohol oxidation, Dalt. Trans. 48 (2019) 17117–17131.
[59] K. Sangeetha, P. Thiruvengetam. K. Karthick, S.S. Sankar, S. Kundu, Detection of Lignin Motifs with RuO2-DNA as Active Catalyst via Surface Enhanced Raman Scattering Studies, ACS Sustain. Chem. Eng. (2019).
[60] S. Anantharaj, U. Nithiyanantham, S.R. Ede, S. Kundu, Osmium organosol on DNA: Application in catalytic hydrogenation reaction and in SERS studies, Ind. Eng. Chem. Res. 53 (2014) 19228–19238.
[61] K. Sakthikumar, S. Anantharaj, S.R. Ede, K. Karthick, S. Kundu, Highly stable Rhenium Organosol on DNA Scaffold for Catalytic and SERS Applications, J. Mater. Chem. C. 4 (2016) 6309–6320.
[62] D. Majumdar, A. Singha, P.K. Mondal, S. Kundu, DNA-Mediated Wirelike Clusters of Silver Nanoparticles: An Ultrasensitive SERS Substrate, ACS Appl. Mater. Interfaces. 5 (2013) 7798−7807
[63] K. Sakthikumar, S. Anantharaj, S.R. Ede, K. Karthick, S. Kundu, A highly stable rhenium organosol on a DNA scaffold for catalytic and SERS applications †, J. Mater. Chem. C. 4 (2016) 6309–6320.
[64] S. Anantharaj, K. Sakthikumar, A. Elangovan, G. Ravi, T. Karthik, S. Kundu, Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies, J. Colloid Interface Sci. 483 (2016) 360–373.
[65] N. Sai, R. Satyavolu, L.H. Tan, Y. Lu, DNA-Mediated Morphological Control of Pd-Au Bimetallic Nanoparticles, J. Am. Chem. Soc. 138 (2016) 16542–16548.
[66] J. Xie, Y. Zheng, J.Y. Ying, Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters, J. Am. Chem. Soc. 131 (2009) 888–889
[67] J. Sheng, L. Wang, Y. Han, W. Chen, H. Liu, M. Zhang, L. Deng, Y.-N. Liu, Dual Roles of Protein as a Template and a Sulfur Provider: A General Approach to Metal Sulfides for Efficient Photothermal Therapy of Cancer, Small. 14 (2017) 1702529.
[68] T. Yang, L. Liu, X. Lv, Q. Wang, H. Ke, Y. Deng, H. Yang, X. Yang, G. Liu, Y. Zhao, H. Chen, Size-Dependent Ag2S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy, ACS Nano. 11 (2017) 1848−1857.
[69] K.M. Hindi, A.J. Ditto, M.J. Panzner, D.A. Medvetz, D.S. Han, C.E. Hovis, J.K. Hilliard, J.B. Taylor, Y.H. Yun, C.L. Cannon, W.J. Youngs, Biomaterials The antimicrobial efficacy of sustained release silver – carbene complex-loaded L -tyrosine polyphosphate nanoparticles : Characterization , in vitro and in vivo studies, Biomaterials. 30 (2009) 3771–3779.
[70] K. Blecher, A. Nasir, A. Friedman, The growing role of nanotechnology in in combating infectious disease, Virulence. 5 (2011) 395–401
[71] J. Singh, A.S. Dhaliwal, Novel Green Synthesis and Characterization of the Antioxidant Activity of Silver Nanoparticles Prepared from Nepeta leucophylla Root Extract, Anal. Lett. 52 (2019) 213–230.
[72] D.F. Ollis, E. Pelizzetti, N. Serpone, Destructuction of Water contaminants, Environ. Si. Technol. 25 (1991) 1532
[73] A. Mills, R.H. Davies, D. Worsley, Water Purification by Semiconductor Photocatalysis, Chem. Soc. Rev. 22 (1982) 417–425
[74] D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications – a review, Chem Technol Biotechnol. 116 (2002) 102–116.
[75] I.K. Konstantinou, T.A. Albanis, TiO2 -assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review, Appl. Catal. B Environ. 49 (2004) 1–14.
[76] M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination. 276 (2011) 13–27.
[77] A.M. Braun, M. Gilson, M. Krieg, M. Maurette, P. Murasecco, E. Oliveros, Electron and Energy Transfer from Phenothiazine Triplets, in: ACS Symp. Ser. Am. Chem. Soc., 1985: pp. 79–97
[78] L.I.U. Wei, W. Xiangfei, C.A.O. Lixin, S.U. Ge, Z. Lan, W. Yonggang, Microemulsion synthesis and photocatalytic activity of visible light-active BiVO4 nanoparticles, Sci. China. 54 (2011) 724–729.
[79] K.P.K. A, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.-G. Sonntag, L. Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere. 53 (2003) 71–77.
[80] S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward Solar Fuels: Photocatalytic Conversion of Hydrocarbons, ACS Nano. 4 (2010) 1259–1278
[81] F. Dong, Y. Sun, L. Wu, Z. Wu, Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance, Catal. Sci. Technol. 2 (2012) 1332–1335.
[82] C. Alvarez-lorenzo, A. Concheiro, Bioinspired drug delivery systems, Curr. Opin. Biotechnol. 24 (2013) 1167–1173.
[83] S. V Patwardhan, Biomimetic and bioinspired silica: recent developments and applications, Chem. Commun. 47 (2011) 7567–7582.
[84] S.C. Jang, O.Y. Kim, C.M. Yoon, D. Choi, T. Roh, J. Park, J. Nilsson, J. Lo, Y.S.G. M, Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors, ACS Nano. 7 (2013) 7698-7710
[85] K. Ariga, K. Kawakami, M. Ebara, Y. Kotsuchibashi, Q. Ji, J.P. Hill, Bioinspired nanoarchitectonics as emerging drug delivery systems, NewJ. Chem. 38 (2014) 5149–5163.
[86] C.R. Steven, G.A. Busby, C. Mather, B. Tariq, M.L. Briuglia, D.A. Lamprou, A.J. Urquhart, M. Helen, S. V Patwardhan, Bioinspired silica as drug delivery systems and their biocompatibility, J. Mater. Chem. B. 2 (2014) 5028–5042.
[87] X. Zhou, P. Ma, A. Wang, C. Yu, T. Qian, S. Wu, J. Shen, Biosensors and Bioelectronics Dopamine fl uorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids, Biosens. Bioelectron. 64 (2015) 404–410.
[88] M. Gao, B.Z. Tang, Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives, ACS Sens. 10 (2017) 1382–1399.
[89] E. Tomat, S.J. Lippard, Imaging mobile zinc in biology, Curr. Opin. Chem. Biol. 14 (2010) 225–230.
[90] N.I. Georgiev, V.B. Bojinov, P.S. Nikolov, Dyes and Pigments The design, synthesis and photophysical properties of two novel 1 , 8-naphthalimide fl uorescent pH sensors based on PET and ICT, Dye. Pigment. 88 (2011) 350–357.
[91] S.K. Das, M.M.R. Khan, A.K. Guha, N. Naskar, Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst, Green Chem. 15 (2013) 2548–2557.
[92] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun. 3 (2012) 1239.
[93] A. Latorre-sanchez, J.A. Pomposo, Recent bioinspired applications of single-chain nanoparticles, Polym Int. 65 (2016) 855–860.
[94] C. Burcu, D. Ekiz, E. Piskin, G. Demirel, Green catalysts based on bio-inspired polymer coatings and electroless plating of silver nanoparticles, J. Mol. Catal. A Chem. 350 (2011) 97–102.
[95] D.P. Debecker, C. Faure, M. Meyre, A. Derre, E.M. Gaigneaux, A New Bio-Inspired Route to Metal-Nanoparticle-Based Heterogeneous Catalysts, Small. 4 (2008) 1806–1812.
[96] S. Anantharaj, P.E. Karthik, B. Subramanian, S. Kundu, Pt Nanoparticle Anchored Molecular Self-Assemblies of DNA: An Extremely Stable and Efficient HER Electrocatalyst with Ultralow Pt Content, ACS Catal. 6 (2016) 4660–4672.
[97] S. Anantharaj, M. Jayachandran, S. Kundu, Unprotected and interconnected Ru0 nano-chain networks: Advantages of unprotected surfaces in catalysis and electrocatalysis, Chem. Sci. 7 (2016) 3188–3205.
[98] L. Lai, J.R. Potts, D. Zhan, L. Wang, K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy Environ. Sci. 5 (2012) 7936–7942.
[99] C. Gong, S. Sun, Y. Zhang, L. Sun, Z. Su, A. Wu, G. Wei, Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications, Nano Scale. 11 (2019) 4147–4182.
[100] S.R. Ede, S. Kundu, Microwave Synthesis of SnWO4 Nanoassemblies on DNA Scaffold: A Novel Material for High Performance Supercapacitor and as Catalyst for Butanol Oxidation, ACS Sustain. Chem. Eng. 3 (2015) 2321–2336.
[101] S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Ananthara, S. Kundu, Bio-molecule Assisted Aggregation of ZnWO4 Nanoparticles (NPs) into Chain-like Assemblies: Material for High Performance Supercapacitor and as Catalyst for Benzyl Alcohol Oxidation, Inorg. Chem. 54 (2015) 3851–3863.
[102] L. Wang, C. Gong, X. Yuan, G. Wei, Controlling the Self-Assembly of Biomolecules into Functional Nanomaterials through Internal Interactions and External Stimulations: A Review, Nanomaterials. 9 (2019) 285.
[103] U. Nithiyanantham, A. Ramadoss, R. Ede, S. Kundu, DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: supercapacitor and dye sensitized solar cell applications, Nanoscale. 6 (2014) 8010–8023.
[104] A. Samanta, I.L. Medintz, Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology, Nanoscale. 8 (2016) 9037–9095.
[105] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854
[106] M.A. Zhen-zhen, Y.U. Hui-cheng, W.U. Zhao-yang, W.U. Yan, X. Fu-bing, A Highly Sensitive Amperometric Glucose Biosensor Based on a Nano‐cube Cu2O Modified Glassy Carbon Electrode, Chinese J. Anal. Chem. 44 (2016) 822–827.
[107] Y. Li, R. Zhao, L. Shi, G. Han, Y. Xiao, Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides, RSC Adv. 7 (2017) 53570–53577.
[108] W. Zhao, J. Xu, H. Chen, Photoelectrochemical DNA Biosensors, Chem. Rev. 114 (2014) 7421−7441.
[109] V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. Mcguire, A. Piryatinski, Single-exciton optical gain in semiconductor nanocrystals, Nature. 447 (2007) 441–446.
[110] F. Zhang, H. Jiang, X. Li, X. Wu, H. Li, Amine-Functionalized GO as an Active and Reusable Acid−Base Bifunctional Catalyst for One-Pot Cascade Reactions, ACS Catal. 4 (2014) 394−401
[111] V. Pardo-yissar, E. Katz, J. Wasserman, I. Willner, Acetylcholine Esterase-Labeled CdS Nanoparticles on Electrodes: Photoelectrochemical Sensing of the Enzyme Inhibitors, J. Am. Chem. Soc.. 125 (2003) 622–623
[112] S.W. Hell, Toward fluorescence nanoscopy, Nat. Biotechnol. 21 (2003) 1347–1355.
[113] N.N. Mamedova, N.A. Kotov, Albumin − CdTe Nanoparticle Bioconjugates: Preparation , Structure, and Interunit Energy Transfer with Antenna Effect, Nano Lett. 1 (2001) 281–286
[114] Y. Yan, A.I. Radu, W. Rao, H. Wang, G. Chen, K. Weber, D. Wang, D. Cialla-May, J. Popp, P. Schaaf, Mesoscopically Bi-continuous Ag−Au Hybrid Nanosponges with Tunable Plasmon Resonances as Bottom-Up Substrates for Surface- Enhanced Raman Spectroscopy, Chem. Mater. 28 (2016) 7673−7682.
[115] S. Chen, P. Xu, Y. Li, J. Xue, S. Han, W. Ou, L. Li, W. Ni, Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS, Nano-Micro Lett. 8 (2016) 328–335.
[116] F. Pu, Y. Huang, Z. Yang, H. Qiu, J. Ren, Nucleotide-Based Assemblies for Green Synthesis of Silver Nanoparticles with Controlled Localized Surface Plasmon Resonances and Their Applications, ACS Appl. Mater. Interfaces. 10 (2018) 9929–9937.
[117] L. Sun, D. Zhao, Z. Zhang, B. Li, D. Shen, DNA-based fabrication of density-controlled vertically aligned ZnO nanorod arrays and their SERS applications, J. Mater. Chem. 21 (2011) 9674–9681.
[118] Z.Y. Jiang, X.X. Jiang, S. Su, X.P. Wei, S.T. Lee, Z.Y. Jiang, X.X. Jiang, S. Su, Y. He, Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive , specific , and multiplex DNA detection Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive , specific , and mul, Appl. Phys. Lett. 100 (2012) 203104.
[119] J. Shen, J. Su, J. Yan, B. Zhao, D. Wang, S. Wang, S. Mathur, K. Li, M. Liu, C. Fan, Y. He, S. Song, Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification, Nano Res. 8 (2014) 731–742.
[120] L. Zhang, H. Ma, L. Yang, Design and fabrication of surface-enhanced Raman scattering substrate from DNA – gold nanoparticles assembly with 2-3 nm interparticle gap, RSC Adv. 4 (2014) 45207–45213.
[121] Y. Zhou, B. Liu, R. Yang, J. Liu, Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities, Bioconjugate Chem. 28 (2017) 2903−2909.
[122] Y. Gao, Z. Tang, Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges, Small. 15 (2011) 2133–2146.
[123] E.T. Issue, D. Conjugates, Challenges in antibody – drug conjugate discovery: a bioconjugation and analytical perspective, Bioanalysis. 7 (2015) 1561–1564
[124] S. Zanganeh, R. Spitler, M. Erfanzadeh, M. Mahmoudi, Protein Corona: Opportunities and Challenges, Int. J. Biochem. Cell Biol. 75 (2016) 143–147.
[125] M. Mahmoudi, I. Lynch, M.R. Ejtehadi, M.P. Monopoli, F.B. Bombelli, S. Laurent, Protein-Nanoparticle Interactions: Opportunities and Challenges, Chem. Rev. 111 (2011) 5610–5637.
[126] X. Wang, Y. Hu, H. Wei, Nanozymes in bionanotechnology: from sensing to therapeutics and abd beyond, Inorg. Chem. Front. 3 (2015) 41–60.
[127] Q. Zhao, S. Li, H. Yu, N. Xia, Y. Modis, Virus-like particle-based human vaccines: quality assessment based on structural and functional properties, Trends Biotechnol. 31 (2013) 654–663.
[128] R. Feiner, T. Dvir, Soft and fibrous multiplexed biosensors, Nat. Biomed. Eng. 4 (2020) 135-136.
[129] A.M. El-toni, M.A. Habila, P.A.Alo. Labis, M. Alhoshan, F. Zhang, Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures, Nanoscale. 8 (2015) 2510-2531.
[130] X. Mo, Y. Wu, J. Zhang, T. Hang, M. Li, Bioinspired Multifunctional Au Nanostructures with Switchable Adhesion, Langmuir. 31 (2015) 10850–10858.