Sustainable Corrosion Inhibitors for Copper and its Alloys

$30.00

Sustainable Corrosion Inhibitors for Copper and its Alloys

B. El Ibrahimi

The good properties of copper, as well as its alloys, make them a often used metallic materials in various industries. Regardless of their excellent corrosive resistance, the corrosion process of copper materials can occur under some specific conditions, hence, the need for corrosion inhibitors. Recently, due to many environmental agencies, the “green” aspect was introduced in many fields, including inhibition of corrosion. Keeping in mind economic and eco-friendly aspects, a wide range of compounds were employed as ecological inhibitors for copper materials. For this purpose, the current chapter aims to explore the application of numerous compounds as sustainable inhibitors to control the corrosion of copper materials in various media.

Keywords
Copper, Alloy, Corrosion, Sustainable Inhibitor, Biopolymer, Plant Extract, Ionic Liquids, Amino Acid, Acid, Alkaline, Ecological, Green

Published online 6/5/2021, 29 pages

Citation: B. El Ibrahimi, Sustainable Corrosion Inhibitors for Copper and its Alloys, Materials Research Foundations, Vol. 107, pp 175-203, 2021

DOI: https://doi.org/10.21741/9781644901496-8

Part of the book on Sustainable Corrosion Inhibitors

References
[1] V.S. Sastri, E.Ghali, M. Elboujdaini, Corrosion Prevention and Protection Practical Solutions, first ed., John Wiley & Sons Ltd, 2007. https://doi.org/10.1002/9780470024546
[2] G.H. Koch, N.G. Thompson, O. Moghissi, J.H. Payer, J. Varney, IMPACT (International Measures of Prevention, Application, and Economics of Corrosion Technologies Study), NACE International, Houston, TX, 2016.
[3] A.A. Olajire, Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors – A review, J. Mol. Liq. 248 (2017) 775–808. https://doi.org/10.1016/j.molliq.2017.10.097
[4] Y. Kharbach, F.Z. Qachchachi, A. Haoudi, M. Tourabi, A. Zarrouk, C. Jama, L.O. Olasunkanmi, E.E. Ebenso, F. Bentiss, Anticorrosion performance of three newly synthesized isatin derivatives on carbon steel in hydrochloric acid pickling environment: Electrochemical, surface and theoretical studies, J. Mol. Liq. 246 (2017) 302–316. https://doi.org/10.1016/j.molliq.2017.09.057
[5] E. Ech-chihbi, M.E. Belghiti, R. Salim, H. Oudda, M. Taleb, N. Benchat, B. Hammouti, F. El-Hajjaji, Experimental and computational studies on the inhibition performance of the organic compound “2-phenylimidazo [1,2-a]pyrimidine-3-carbaldehyde” against the corrosion of carbon steel in 1.0 M HCl solution, Surf. and Interfaces. 9 (2017) 206–217. https://doi.org/10.1016/j.surfin.2017.09.012
[6] I. B. Obot, M. M. Solomon, S. A. Umoren, R. Suleiman, M. Elanany, N. M. Alanazi, A. A. Sorour, Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives, Journal of Industrial and Engineering Chemistry 79 (2019) 1–18. https://doi.org/10.1016/j.jiec.2019.06.046
[7] V.S. Sastri, Green corrosion inhibitors, Theory and Practice, John Wiley & Sons, Inc., New Jersey, 2011. https://doi.org/10.1002/9781118015438
[8] P.B. Raja, M.G. Sethuraman, Natural products as corrosion inhibitor for metals in corrosive media – A review, Mater. Lett. 62 (2008) 113–116. https://doi.org/10.1016/j.matlet.2007.04.079
[9] V.S. Sastri, Green Corrosion Inhibitors: Theory and Practice, first ed., John Wiley & Sons Ltd, 2011. https://doi.org/10.1002/9781118015438
[10] B. El Ibrahimi, A. Jmiai, L. Bazzi, S. El Issami, Amino acids and their derivatives as corrosion inhibitors for metals and alloys, Arab. J. Chem. 13 (2020) 740-771. https://doi.org/10.1016/j.arabjc.2017.07.013
[11] P. Zhang, Q. Zhu, Q. Su, B. Guo, S.-k. Cheng, Corrosion behavior of T2 copper in 3.5% sodium chloride solution treated by rotating electromagnetic field, Trans. Nonferrous Met. Soc. China. 26 (2016) 1439-1446. https://doi.org/10.1016/S1003-6326(16)64249-8
[12] L. Núñez, E. Reguera, F. Corvo, E. González, C. Vazquez, Corrosion of copper in seawater and its aerosols in a tropical island, Corros. Sci. 47 (2005) 461-484. https://doi.org/10.1016/j.corsci.2004.05.015
[13] S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, Y. Waseda, Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling, J. Alloys Compd. 417 (2006) 116-120. https://doi.org/10.1016/j.jallcom.2005.09.037
[14] H.-x. Wang, Y. Zhang, J.-l. Cheng, Y.-s. Li, High temperature oxidation resistance and microstructure change of aluminized coating on copper substrate, Trans. Nonferrous Met. Soc. China. 25 (2015) 184-190. https://doi.org/10.1016/S1003-6326(15)63594-4
[15] A.H. Moreira, A.V. Benedetti, P.L. Calot, P.T.A. Sumodjo, Electrochemical behaviour of copper electrode in concentrated sulfuric acid solutions, Electrochim. Acta. 38 (1993) 981–987. https://doi.org/10.1016/0013-4686(93)87018-9
[16] M.M. Antonijevic, M.B. Petrovic, Copper corrosion inhibitors. A review, Int. J. Electrochem. Sci. 3 (2008) 1–28.
[17] G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros. Sci. 50 (2008) 2981-2992. https://doi.org/10.1016/j.corsci.2008.08.043
[18] S. Kaya, L. Guo, C. Kaya, B. Tüzün, I.B. Obot, R. Touir, N. Islam, Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron, J. Taiwan Inst. Chem. Eng. 65 (2016) 522-529. https://doi.org/10.1016/j.jtice.2016.05.034
[19] B. El Ibrahimi, A. Soumoue, A. Jmiai, H. Bourzi, R. Oukhrib, K. El Mouaden, S. El Issami, L. Bazzi, Computational study of some triazole derivatives (un- and protonated forms) and their copper complexes in corrosion inhibition process, J. Mol. Struct. 1125 (2016) 93-102. https://doi.org/10.1016/j.molstruc.2016.06.057
[20] M. K. Awad, M. R. Mustafa, M.M.A. Elnga, Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface, J. Mol. Struct. THEOCHEM. 959 (2010) 66-74. https://doi.org/10.1016/j.theochem.2010.08.008
[21] A. Aouniti, K. F. Khaled, B. Hammouti, Correlation Between Inhibition Efficiency and Chemical Structure of Some Amino Acids on the Corrosion of Armco Iron in Molar HCl, Int. J. Electrochem. Sci. 8 (2013) 5925-5943.
[22] N.O. Eddy, U.J. Ibok, B.I. Ita, QSAR and quantum chemical studies on the inhibition potentials of some amino acids for the corrosion of mild steel in H2SO4, J. Comput. Methods Sci. Eng. 11 (2011) 25-43. https://doi.org/10.3233/JCM-2011-0290
[23] D.Q. Zhang, B. Xie, L.X. Gao, Q.R. Cai, H.G. Joo, K.Y. Lee, Intramolecular synergistic effect of Glutamic acid, Cysteine and Glycine against copper corrosion in hydrochloric acid solution, Thin Solid Films. 520 (2011) 356–361. https://doi.org/10.1016/j.tsf.2011.07.009
[24] M. S. Kilberg, D. Häussinger, Mammalian Amino Acid Transport, Springer Science & Business Media, 1992. https://doi.org/10.1007/978-1-4899-1161-2
[25] B. El Ibrahimi, A. Jmiai, A. Somoue, R. Oukhrib, M. Chadili, S. El Issami, L. Bazzi, Cysteine Duality Effect on the Corrosion Inhibitionand Acceleration of 3003 Aluminium Alloy in a 2% NaCl Solution, Port. Electrochimica Acta. 36(6) (2018) 403-422. https://doi.org/10.4152/pea.201806403
[26] V.F. Wendisch, Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development, Curr. Opin. Biotechnol. 30 (2014) 51-58. https://doi.org/10.1016/j.copbio.2014.05.004
[27] J.-H. Lee, V.F. Wendisch, Production of amino acids – Genetic and metabolic engineering approaches, Bioresour. Technol. 245(B) (2017) 1575-1587. https://doi.org/10.1016/j.biortech.2017.05.065
[28] S. Al-Dahir, N. Vithlani, A. Smith, J.F. Davis, S. Sirohi, Side Effects of Drugs Annual, Elsevier, 2017.
[29] G. Deferrari, I. Mannucci, G. Garibotto, Amino Acid Biosynthesis, in: J.W. Sons (Ed.), Encyclopedia of Life Sciences, 2010. https://doi.org/10.1002/9780470015902.a0000628.pub2
[30] S.A. Umoren, M.M. Solomon, Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review, J. Environ. Chem. Eng. 5 (2017) 246-273. https://doi.org/10.1016/j.jece.2016.12.001
[31] S.A. Umoren, M.M. Solomon, Effect of halide ions on the corrosion inhibition efficiency of different organic species – A review, J. Ind. Eng. Chem. 21 (2015) 81–100. https://doi.org/10.1016/j.jiec.2014.09.033
[32] D.Q. Zhang, Q.R. Cai, X.M. He, L.X. Gao, G.S. Kim, Corrosion inhibition and adsorption behavior of methionine on copper in HCl and synergistic effect of zinc ions, Mater. Chem. Phys. 114 (2009) 612–617. https://doi.org/10.1016/j.matchemphys.2008.10.007
[33] D.Q. Zhang, H. Wu, L.X. Gao, Synergistic inhibition effect of L-phenylalanine and rare earth Ce(IV) ion on the corrosion of copper in hydrochloric acid solution, Mater. Chem. Phys. 133 (2012) 981–986. https://doi.org/10.1016/j.matchemphys.2012.02.001
[34] D.Q. Zhang, Q.R. Cai, X.M. He, L.X. Gao, G.D. Zhou, Inhibition effect of some amino acids on copper corrosion in HCl solution, Mater. Chem. Phys. 112 (2008) 353–358. https://doi.org/10.1016/j.matchemphys.2008.05.060
[35] A.S. Fouda, A.A. Nazeer, E.A. Ashour, Amino acids as environmentally-friendly corrosion inhibitors for Cu10Ni alloy in sulfide-polluted salt water: Experimental and theoretical study, Mater. Prot. 52 (2011) 21-34.
[36] A. A. Nazeer, K. Y. Nageh, I. A. Gehan, A. Elsayed, Effect of Glycine on the electrochemical and stress corrosion cracking behavior of Cu10Ni alloy in sulfide polluted salt water, Ind. Eng. Chem. Res. 50 (2011) 8796-8802. https://doi.org/10.1021/ie200763b
[37] D. Zhang, X. He, Q. Cai, L. Gao, G. Kim, Arginine self-assembled monolayers against copper corrosion and synergistic effect of iodide ion, J. Appl. Electrochem. 39 (2009) 1193-1198. https://doi.org/10.1007/s10800-009-9784-7
[38] D.Q. Zhang, B. Xie, L.X. Gao, Q.R. Cai, H.G. Joo, K.Y. Lee, Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution, Thin Solid Films. 520 (2011). https://doi.org/10.1016/j.tsf.2011.07.009
[39] D.Q. Zhang, B. Xie, L.X. Gao, H.G. Joo, K.Y. Lee, Inhibition of copper corrosion in acidic chloride solution by Methionine combined with cetrimonium bromide/cetylpyridinium bromide, J. Appl. Electrochem. 41 (2011) 491–498. https://doi.org/10.1007/s10800-011-0259-2
[40] K.F. Khaled, Corrosion control of copper in nitric acid solutions using some amino acids – A combined experimental and theoretical study, Corros. Sci. 52 (2010) 3225–3234. https://doi.org/10.1016/j.corsci.2010.05.039
[41] S.A. Umoren, U.M. Eduok, Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review, Carbohyd. Polym. 140 (2016) 314–341. https://doi.org/10.1016/j.carbpol.2015.12.038
[42] A. Jmiai, B.E. Ibrahimi, A. Tara, R. Oukhrib, S.E. Issami, O. Jbara, L. Bazzi, M. Hilali, Chitosan as an eco-friendly inhibitor for copper corrosion in acidic medium: protocol and characterization, Cellulose. 24 (2017) 3843-3867. https://doi.org/10.1007/s10570-017-1381-z
[43] K.E. Mouaden, B.E. Ibrahimi, R. Oukhrib, L. Bazzi, B. Hammouti, O. Jbara, A. Tara, D.S. Chauhan, M.A. Quraishi, Chitosan polymer as a green corrosion inhibitor for copper in sulfide-containing synthetic seawater, Int. J. Biol. Macromol. 119 (2018) 1311–1323. https://doi.org/10.1016/j.ijbiomac.2018.07.182
[44] R. Oukhrib, B.E. Ibrahimi, H. Bourzi, K.E. Mouaden, A. Jmiai, S.E. Issami, L. Bammou, L. Bazzi, Quantum chemical calculations and corrosion inhibition efficiency of biopolymer “chitosan” on copper surface in 3%NaCl, J. Mater. Environ. Sci. 8 (2017) 195-208.
[45] A. Jmiai, B. El Ibrahimi, A. Tara, S. El Issami, O. Jbara, L. Bazzi, Alginate biopolymer as green corrosion inhibitor for copper in 1 M hydrochloric acid: Experimental and theoretical approaches, J. Mol. Struct. 1157 (2018) 408-417. https://doi.org/10.1016/j.molstruc.2017.12.060
[46] Y. Qin, J. Jiang, L. Zhao, J. Zhang, F. Wang, in: A.M. Grumezescu, A.M. Holban (Eds.), Biopolymers for Food Design, Academic Press, 2018, pp. 409-429. https://doi.org/10.1016/B978-0-12-811449-0.00013-X
[47] K.V. Kumar, B.V.A. Rao, N.Y. Hebalkar, Phosphorylated chitin as a chemically modifed polymer for ecofriendly corrosion inhibition of copper in aqueous chloride environment, Res. Chem. Intermed. 43 (2017) 5811–5828. https://doi.org/10.1007/s11164-017-2964-x
[48] K. Wan, P. Feng, B. Hou, Y. Li, Enhanced corrosion inhibition properties of carboxymethyl hydroxypropyl chitosan for mild steel in 1.0 M HCl solution, RSC Adv. 6 (2016) 77515–77524. https://doi.org/10.1039/C6RA12975G
[49] J. Haque, V. Srivastava, D.S. Chauhan, H. Lgaz, M.A. Quraishi, Microwave-induced synthesis of chitosan schiffbases and their application as novel and green corrosion inhibitors: experimental and theoretical approach, ACS Omega. 3 (2018) 5654−5668. https://doi.org/10.1021/acsomega.8b00455
[50] P.B. Raja, M.G. Sethuraman, Natural products as corrosion inhibitor for metals in corrosive media — A review, Mater. Lett. 62 (2008) 113–116. https://doi.org/10.1016/j.matlet.2007.04.079
[51] K. Dahmani, M. Galai, M. Cherkaoui, A. El Hasnaoui, A. El Hessni, Cinnamon essential oil as a novel eco-friendly corrosion inhibitor of copper in 0.5 M Sulfuric Acid medium, J. Mater. Environ. Sci. 8 (2017) 1676–1689.
[52] F. Mounir, S. El Issami, L. Bazzi, R. Salghi, N. Abidi, S. Jodeh, L. Bazzi, A. Eddine, Green approach to corrosion inhibition of copper by two oils of Argania Spinosa (L.) in phosphoric acid, J. Mater. Environ. Sci. 6 (2015) 2066–2075.
[53] L. Palou, A. Ali, E. Fallik, G. Romanazzi, GRAS, plant-and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce, Postharvest Biol. Technol. 122 (2016) 41–52. https://doi.org/10.1016/j.postharvbio.2016.04.017
[54] S. Marzorati, L. Verotta, S. P. Trasatti, Green corrosion inhibitors from natural sources and biomass wastes, Molecules. 48 (2019) 1-24. https://doi.org/10.3390/molecules24010048
[55] M. Nasrollahzadeh, S.M. Sajadi, M. Khalaj, Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol, RSC Adv. 4 (2014) 47313–47318. https://doi.org/10.1039/C4RA08863H
[56] J. Seo, S. Lee, M.L. Elam, S.A. Johnson, J. Kang, B.H. Arjmandi, Study tofind the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy, Food Sci. Nutr. 2 (2014) 174–180. https://doi.org/10.1002/fsn3.91
[57] O. Nkuzinna, M. Menkiti, O. Onukwuli, Inhibition of copper corrosion by acid extracts of Gnetum africana and Musa acuminate peel, Int. J. Multidiscip. Sci. Eng. 2 (2011) 2045–7057.
[58] C. Verma, E. E. Ebenso, I. Bahadur, M. A. Quraishi, An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media, J. Mol. Liq. 266 (2018) 577–590. https://doi.org/10.1016/j.molliq.2018.06.110
[59] B.E. A. Rani, B.B.J. Basu, Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview, Int. J. Corros. 2012 (2012) 1-15. https://doi.org/10.1155/2012/380217
[60] M.P. Savita, N. Chaubey, S. Kumar, V.K. Singh, M.M. Singh, Strychnos nuxvomica, Piper longumand Mucuna pruriens, seed extracts as eco-friendly corrosion inhibitors for copper in nitric acid, RSC Adv. 6 (2016) 95644–95655. https://doi.org/10.1039/C6RA16481A
[61] C. Rahal, M. Masmoudi, R. Abdelhedi, R. Sabot, M. Jeannin, M. Bouaziz, P. Refait, Olive leaf extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: a study by voltammetry around OCP, J. Electroanal. Chem. 769 (2016) 53–61. https://doi.org/10.1016/j.jelechem.2016.03.010
[62] A.E.-A.S. Fouda, S.H. Etaiw, D.M.A. El-Azziz, O.A. Elbaz, Synergistic effect of barium chloride on corrosion inhibition of copper by aqueous extract of lupine seeds in nitric acid, Int. J. Electrochem. Sci. 12 (2017) 5934–5950. https://doi.org/10.20964/2017.07.08
[63] C.A. Loto, R.T. Loto, A.P.I. Popoola, Inhibition effect of extracts of carica papaya and camellia sinensis leaves on the corrosion of duplex (α β) brass in 1m nitric acid, Int. J. Electrochem. Sci. 6 (2011) 4900-4914.
[64] N. Raghavendra, J.I. Bhat, Application of green products for industrially important materials protection: An amusing anticorrosive behavior of tender arecanut husk (green color) extract at metal-test solution interface, Measurement. 135 (2019) 625–639. https://doi.org/10.1016/j.measurement.2018.12.021
[65] F. Wedian, M.A. Al-Qudah, A.N. Abu-Baker, The effect of Capparis spinosa L. Extract as a green inhibitor on the corrosion rate of copper in a strong alkaline solution, Port. Electrochimica Acta. 34 (2016) 39-51. https://doi.org/10.4152/pea.201601039
[66] R. Oukhrib, S. E. Issami, B. E. Ibrahimi, K. E. Mouaden, L. Bazzi, L. Bammou, A. Chaouay, R. Salghi, S. Jodeh, B. Hammouti, A. Amin-Alami, Ziziphus lotus as green inhibitor of copper corrosion in natural sea water, Port. Electrochim Acta. 35 (2017) 187–200. https://doi.org/10.4152/pea.201704187
[67] A. Jmiai, B.E. Ibrahimi, A. Tara, M. Chadili, S.E. Issami, O. Jbara, A. Khallaayoun, L. Bazzi, Application ofZizyphus Lotuse- pulp of Jujube extract as green and promising corrosion inhibitor for copper in acidic medium, J. Mol. Liq. 268 (2018) 102–113. https://doi.org/10.1016/j.molliq.2018.06.091
[68] F. Wedian, M.A. Al-Qudah, G.M. Al-Mazaideh, Corrosion inhibition of copper by Capparis spinosaL. extract in strong acidic medium: experimental and density functional theory, Int. J. Electrochem. Sci. 12 (2017) 4664–4676. https://doi.org/10.20964/2017.06.47
[69] B. El Ibrahimi, K. El Mouaden, A. Jmiai, A. Baddouh, S. El Issami, L. Bazzi, M. Hilali, Understanding the influence of solution’s pH on the corrosion of tin in saline solution containing functional amino acids using electrochemical techniques and molecular modeling, Surf. Interfaces 17 (2019) 100343. https://doi.org/10.1016/j.surfin.2019.100343
[70] B. El Ibrahimi, A. Jmiai, K. El Mouaden, A. Baddouh, S. El Issami, L. Bazzi, M. Hilali, Effect of solution’s pH and molecular structure of three linear α-amino acids on the corrosion of tin in salt solution: A combined experimental and theoretical approach, J. Mol. Struct. 1196 (2019) 105-118. https://doi.org/10.1016/j.molstruc.2019.06.072
[71] B. El Ibrahimi, A. Jmiai, K. El Mouaden, R. Oukhrib, A. Soumoue, S. El Issami, L. Bazzi, Theoretical evaluation of somea-amino acids for corrosion inhibition of copper in acidic medium: DFT calculations, Monte Carlo simulations and QSPR studies, J. King Saud Univ. 32 (2020) 163-171. https://doi.org/10.1016/j.jksus.2018.04.004
[72] M.P. Savita, N. Chaubey, V.K. Singh, M.M. Singh, Eco-friendly inhibitors for copper corrosion in nitric acid: theoretical and experimental evaluation, Metall. Mater. Trans. B 47 (2016) 47–57. https://doi.org/10.1007/s11663-015-0488-6
[73] A.Y. El-Etre, M. Abdallah, Z.E. El-Tantawy, Corrosion inhibition of some metals using lawsonia extract, Corros. Sci. 47 (2005) 385–395. https://doi.org/10.1016/j.corsci.2004.06.006
[74] R. Ouache, H. Harkat, P. Pale, K. Oulmi, Phytochemical compounds and anti-corrosion activity of Veronica rosea, Nat. Prod. Res. 33 (9) (2019) 1374-1378. https://doi.org/10.1080/14786419.2018.1474464
[75] L. Vrsalovic, S. Gudic, D. Gracic, I. Smoljko, I. Ivanic, M. Kliskic, E.E. Oguzie, Corrosion protection of copper in sodium chloride solution using propolis, Int. J. Electrochem. Sci. 13 (2018) 2102–2117. https://doi.org/10.20964/2018.02.71
[76] P.S. Pratihar, M.P.S. Verma, A. Sharma, Capparis decidua seeds: potential green inhibitor to combat acid corrosion of copper, Rasayan J. Chem. 8 (2017) 411–421.
[77] Z. Chen, H. Cen, L. Wei, Y. Cao, X. Guo, Inhibitory action of garlic extract in the corrosion of copper under thin electrolyte layers, Surf. Rev. Lett. 1850128 (2017) 1-9. https://doi.org/10.1142/S0218625X18501287
[78] A.R. Hajipour, F. Refiee, Recent Progress in Ionic Liquids and their Applications in Organic Synthesis, Org. Prep. Proced. Int. 47 (2015) 249–308. https://doi.org/10.1080/00304948.2015.1052317
[79] Suresh, J.S. Sandhu, Recent advances in ionic liquids: green unconventional solvents of this century: part I, Green Chem. Lett. Rev. 4 (2011) 289–310. https://doi.org/10.1080/17518253.2011.572294
[80] S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: database and evaluation, J. Phys. Chem. Ref. Data 35 (2006) 1475–1517. https://doi.org/10.1063/1.2204959
[81] H. Zhao, Innovative applications of ionic liquids as“green”engineering liquids, Chem. Eng. Commun. 193 (2006) 1660–1677. https://doi.org/10.1080/00986440600586537
[82] A. Fernicola, B. Scrosati, H. Ohno, Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices, Ionics 12 (2006) 95–102. https://doi.org/10.1007/s11581-006-0023-5
[83] T. Tsuda, C.L. Hussey, Electrochemical applications of room-temperature ionic liquids, Electrochem. Soc. Interface 16 (2007) 42–49. https://doi.org/10.1149/2.F05071IF
[84] C. Verma, E.E. Ebenso, M.A. Quraishi, Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview, J. Mol. Liq. 233 (2017) 403–414. https://doi.org/10.1016/j.molliq.2017.02.111
[85] N.V. Likhanova, M.A. Domínguez-Aguilar, O. Olivares-Xometl, N. Nava-Entzana, E. Arce, H. Dorantes, The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment, Corros. Sci. 52 (2010) 2088–2097. https://doi.org/10.1016/j.corsci.2010.02.030
[86] X. Zheng, S. Zhang, W. Li, M. Gong, L. Yin, Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution, Corros. Sci. 95 (2015) 168–179. https://doi.org/10.1016/j.corsci.2015.03.012
[87] L. Feng, S. Zhang, Y. Qiang, Y. Xu, L. Guo, L. H. Madkour, S. Chen, Experimental and theoretical investigation of thiazolyl blue as a corrosion inhibitor for copper in neutral sodium chloride solution, Materials 11 (2018) 1042. https://doi.org/10.3390/ma11061042
[88] A. Bousskri, R. Salghi, A. Anejjar, M. Messali, S. Jodeh, O. Benali, M. Larouj, I. Warad, O. Hamed, B. Hammouti, The inhibition effect of 1-pentyl pyridazinium bromide towards copper corrosion in phosphoric acid containing chloride, Port. Electrochimica Acta 34 (2016) 1-21. https://doi.org/10.4152/pea.pea.201601001
[89] A. Bousskri, R. Salghi, A. Anejjar, S. Jodeh, M.A. Quraishi, M. Larouj, H. Lgaz, M. Messali, S. Samhan, M. Zougagh, Pyridazinium-based ionic liquids as corrosion inhibitors for copper in phosphoric acid containing chloride: electrochemical, surface and quantum chemical comparatives studies, Der. Pharma. Chemica. 8 (2016) 67-83.
[90] Y. Qiang, S. Zhang, L. Guoc, X. Zheng, B. Xiang, S. Chen, Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid, Corros. Sci. 119 (2017) 68–78. https://doi.org/10.1016/j.corsci.2017.02.021
[91] G. Vastag, A. Shaban, M. Vraneš, A. Tot, S. Belić, S. Gadžurić, Influence of the N-3 alkyl chain length on improving inhibition properties of imidazolium-based ionic liquids on copper corrosion, J. Mol. Liq. 264 (2018) 526–533. https://doi.org/10.1016/j.molliq.2018.05.086
[92] G.L.F. Mendonça, S.N. Costa, V.N. Freire, P.N.S. Casciano, A.N. Correia, P.d. Lima-Neto, Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods, Corros. Sci. 115 (2017) 41-55. https://doi.org/10.1016/j.corsci.2016.11.012
[93] H.H.A. Rahman, A.H.E. Moustafa, M.K. Awad, Potentiodynamic and quantum studies of some amino acids as corrosion inhibitors for copper, Int. J. Electrochem. Sci. 7 (2012) 1266–1287.
[94] G.M.A. El-Hafez, W.A. Badawy, The use of Cysteine, N-acetyl cysteine and Methionine as environmentally friendly corrosion inhibitors for Cu–10Al–5Ni alloy in neutral chloride solutions, Electrochim. Acta 108 (2013) 860–866. https://doi.org/10.1016/j.electacta.2013.06.079
[95] S. Varvara, I. Rotaru, M. Popa, R. Bostan, M. Glevitzky, L. Muresan, Environmentally-safe corrosion inhibitors for the protection of bronzes against corrosion in acidic media, Chem. Bull. “POLITEHNICA” Univ. (Timisoara) 55 (2010) 156-161.
[96] W. A. Badawy, K. M. Ismail, A. M. Fathi, Corrosion control of Cu–Ni alloys in neutral chloride solutions by amino acids, Electrochim. Acta 51 (2006) 4182–4189. https://doi.org/10.1016/j.electacta.2005.11.037
[97] A.S. Fouda, Y.M. Abdallah, G.Y. Elawady, R.M. Ahmed, Electrochemical study on the efectively of Hyoscyamus muticusextract as a green inhibitor for corrosion of copper in 1 M HNO3, J. Mater. Environ. Sci. 5 (2015) 1519–1531.
[98] S.M. Ali, H.A.A. lehaibi, The inhibitive performance of fenugreek for corrosion of copper and nickel in sulfuric acid, Int. J. Electrochem. Sci. 11 (2016) 953–966.
[99] Y.M. Abdallah, K. Shalabi, Comprehensive study of the behavior of copper inhibition in 1 M HNO3 by Euphorbia helioscopialinn. extract as green inhibitor, Prot. Met. Phys. Chem. 51 (2015) 275–284. https://doi.org/10.1134/S2070205115020021
[100] M.A. Deyab, Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution, J. Ind. Eng. Chem. 22 (2015) 384–389. https://doi.org/10.1016/j.jiec.2014.07.036
[101] H.S. Gadow, M.M. Motawea, H.M. Elabbasy, Investigation of myrrh extract as a new corrosion inhibitor for a-brass in 3.5% NaCl solution polluted by 16 ppm sulfde, RSC Adv. 7 (2017) 29883–29898. https://doi.org/10.1039/C7RA04271J
[102] P.D. Rani, S. Selvaraj, Emblica officinalis (AMLA) leaves extract as corrosion inhibitor for copper and its alloy (Cu-27Zn) in natural sea water, Arch. Appl. Sci. Res. 2 (2010) 140–150.