Applications of PEDOT:PSS in Solar Cells


Applications of PEDOT:PSS in Solar Cells

Gokul Ram Nishad, Younus Raza Beg, Priyanka Singh

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is increasingly being used in the field of printed and flexible electronics in the form of electrode as well as intermediate layer. PEDOT:PSS belongs to the family of intrinsically conducting polymer materials whose members can conduct electricity in spite of their organic nature without the presence of metals. It is non-toxic, stable in the presence of air and humidity. Above all, it can be easily processed through conventional means. This chapter deals with the applications of PEDOT:PSS in organic solar cells (OSCs), dye sensitized solar cells (DSSCs) and silicon based hybrid solar cells. PEDOT:PSS is being used as electrode, buffer layer and hole conductive layer. It could manipulate the catalytic nature of counter electrode used in DSSCs. Whereas it may help to manipulate the morphological character in Si based hybrid solar cells along with enhancement of cell performance.

Dye Sensitized Solar Cells, Hole Transport Layer, Inverted Organic Solar Cells, Organic Solar Cells, PEDOT:PSS, Silicon Based Hybrid Solar Cells

Published online 5/1/2021, 37 pages

Citation: Gokul Ram Nishad, Younus Raza Beg, Priyanka Singh, Applications of PEDOT:PSS in Solar Cells, Materials Research Foundations, Vol. 103, pp 40-76, 2021


Part of the book on Materials for Solar Cell Technologies II

[1] M. Kemerink S. Timpanaro, M. M. de Kok, E. A. Meulenkamp, F. J. Touwslager Three-dimensional inhomogeneities in PEDOT:PSS films Phys. Chem. B 2004, 108, 49, 18820-18825.
[2] K. Kawano, N. Ito, T. Nishimori, J. Sakai, Open circuit voltage of stacked bulk heterojunction organic solar cells, Appl. Phys. Lett. 88 (2006) 073514.
[3] H. Hoppe, N.S. Sariciftci, D. Meissner, Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells, Mol. Cryst. Liq. Cryst. 385 (2002) 113-119.
[4] M.G. Kang, M.S. Kim, J. Kim, L.J. Guo, Organic solar cells using nanoimprinted transparent metal electrodes, Adv. Mater. 20 (2008) 4408–4413.
[5] M.G. Kang, H.J. Park, S.H. Ahn, L.J. Guo, Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells, Sol. Energy Mater. Sol. Cells. 94 (2010) 1179–1184.
[6] M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun. 3 (2012) 770.
[7] D. Qu, F. Liu, Y. Huang, W. Xie, Q. Xu, Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles, Opt. Express. 19 (2011) 24795-24803.
[8] E. Kymakis, G. Klapsis, E. Koudoumas, E. Stratakis, N. Kornilios, N. Vidakis, Y. Franghiadakis, Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics, Eur. Phys. J. Appl. Phys. 36 (2007) 257–259.
[9] Z. Li, F. Qin, T. Liu, R. Ge, W. Meng, J. Tong, S. Xiong, Y. Zhou, Optical properties and conductivity of PEDOT:PSS films treated by 4 polyethylenimine solution for organic solar cells, Org. Electron. 21 (2015) 144-148.
[10] H. Park, J.A. Rowehl, K.K. Kim, V. Bulovic, J. Kong, Doped graphene electrodes for organic solar cells, Nanotechnology. 21 (2010) 505204.
[11] Y.J. Noh, S.S. Kim, T.W. Kim, S.I. Na, Cost-effective ITO-free organic solar cells with silver nanowire–PEDOT:PSS composite electrodes via a one-step spray deposition method, Sol. Energy Mater. Sol. Cells. 120 (2014) 226–230.
[12] S. Park, S.J. Tark, D. Kim, Effect of sorbitol doping in PEDOT:PSS on the electrical performance of organic photovoltaic devices, Current Applied Physics 11 (2011) 1299-1301.
[13] A. Singh, M. Katiyarab, A. Garg, Understanding the formation of PEDOT:PSS films by ink-jet printing for organic solar cell applications, RSC Adv. 5 (2015) 78677-78685.
[14] T. Hori, Y. Miyake, N. Yamasaki, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Solution processable organic solar cell based on bulk heterojunction utilizing phthalocyanine derivative, Appl. Phys. Express. 3 (2010) 101602.
[15] B. Kadem, W. Cranton, A. Hassan, Metal salt modified PEDOT:PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells, Org. Electron. 24 (2015) 73–79.
[16] K.J. Kim, Y.S. Kim, W.S. Kang, B.H. Kang, S.H. Yeom, D.E. Kim, J.H. Kim, S.W. Kang, Inspection of substrate-heated modified PEDOT:PSS morphology for all spray deposited organic photovoltaic’s, Sol. Energy Mater. Sol. Cells. 94 (2010) 1303–1306.
[17] S.H. Oh, S.J. Heo, J.S. Yang, H.J. Kim, Effects of ZnO Nanoparticles on P3HT:PCBM Organic Solar Cells with DMF-Modulated PEDOT:PSS Buffer Layers, ACS Appl. Mater. Interfaces. 5 (2013) 11530-11534.
[18] W.J. Yoon, K.Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, P.R. Berger, Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using selfassembled layer of silver nanoparticles. Sol. Energy Mater. Sol. Cells. 94 (2010) 128–132.
[19] L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H.Z. Chen, S. He, Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres, Appl. Energy. 88 (2011) 848–852.
[20] Z. Su, L. Wang, Y. Li, H. Zhao, B. Chu, W. Li, Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells, Nanoscale Res. Lett. 7 (2012) 465.
[21] X. Xi, Q. Meng, F. Li, Y. Ding, J. Ji, Z. Shi, G. Li, The characteristics of the small molecule organic solar cells with PEDOT:PSS/ LiF double anode buffer layer system, Solar Energy Materials & Solar Cells 94 (2010) 623–628.
[22] R. Pacios, A.J. Chatten, K. Kawano, J.R. Durrant, D.D.C. Bradley, J. Nelson, Effects of photo-oxidation on the performance of poly[2-methoxy-5-(3,7- dimethyloctyloxy)-1,4-phenylene vinylene]:[6,6]-phenyl C61-butyric acid methyl ester solar cells, Adv. Funct. Mater. 16 (2006) 2117–2126.
[23] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Degradation of organic solar cells due to air exposure, Sol. Energy Mater. Sol. Cells. 90 (2006) 3520–3530.
[24] T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, K. Takahashi, Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer, Sol. Energy Mater. Sol. Cells. 92 (2008) 1476– 1482.
[25] T. Kuwabara, H. Sugiyama, T. Yamaguchi, K. Takahashi, Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode, Thin Solid Films. 517 (2009) 3766–3769.
[26] J.W. Kang, Y.J. Kang, S. Jung, M. Song, D.G. Kim, C.S. Kim, S.H .Kim, Fully spray-coated inverted organic solar cells, Sol. Energy Mater. Sol. Cells. 103 (2012) 76–79.
[27] R.J. Peh, Y. Lu, F. Zhao, C.L.K. Lee, W.L. Kwan, Vacuum-free processed transparent inverted organic solar cells with spray-coated PEDOT:PSS anode, Sol. Energy Mater. Sol. Cells. 95 (2011) 3579–3584.
[28] L. Mao, Q. Chen, Y. Li, Y. Li, J. Cai, W. Su, S. Bai, Y. Jin, H.Q. Ma, Z. Cui, L. Chen, Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells, Nano Energy. 10 (2014) 259–267.
[29] F.J. Lim, K. Ananthanarayanan, J. Luther, G.W. Ho, Influence of a novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells, J. Mater. Chem. 22 (2012) 25057-25064.
[30] B. Zimmermann, U. Wurfel, M. Niggemann, Long term stability of efficient inverted P3HT:PCBM solar cells, Sol. Energy Mater. Sol. Cells. 93 (2009) 491–496.
[31] Y. Liu, C.C. Chen, Z. Hong, J. Gao, M. Yang, H. Zhou, L. Dou, G. Li, Y. Yang, Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency, Sci. Rep. 3 (2013) 3356.
[32] D. Lee, W.K. Bae, I. Park, D.Y. Yoon, S. Lee, C. Lee, Transparent electrode with ZnO nanoparticles in tandem organic solar cells, Sol. Energy Mater. Sol. Cells. 95 (2011) 365–368.
[33] M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.L. Yip, X. Peng, Y. Cao, Y. Chen, Solution-processed organic tandem solar cells with power conversion efficiencies >12%, Nat. Photonics. 11 (2017) 85-90.
[34] D.J.D. Moet, P.D. Bruyn, P.W.M. Blom, High work function transparent middle electrode for organic tandem solar cells, Appl. Phys. Lett. 96 (2010) 153504.
[35] Y. Zhou, C.F.Hernandez, J.W. Shim, T.M. Khan, B. Kippelen, High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ. Sci. 5 (2012) 9827-9832.
[36] Z. Zhang, X. Zhang, H. Xu, Z. Liu, S. Pang, X. Zhou, S. Dong, X. Chen, G. Cui, CuInS2 Nanocrystals/PEDOT:PSS composite counter electrode for dye-sensitized solar cells, ACS Appl. Mater. Interfaces. 4 (2012) 6242-6246.
[37] T. Yohannes, O. Inganäs, Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte, Sol. Energy Mater. Sol. Cells, 51 (1998) 193-202.
[38] Y.G. Tian, W.J. Huai, X.Y. Ming, L.J. Ming, H.M. Liang, F.L. Qing, Y. Ying, A dye-sensitized solar cell based on PEDOT:PSS counter electrode, Chin. Sci. Bull. 58 (2013) 559-566.
[39] J. Ma, S. Yuan, S. Yang, H. Lu, Y. Li, Poly(3,4-ethylenedioxythiophene)/reduced graphene oxide composites as counter electrodes for high efficiency dye-sensitized solar cells, Appl. Surf. Sci. 440 (2018) 8–15.
[40] J. Xia, N. Masaki, K. Jiang, S. Yanagida, The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell, J. Mater. Chem. 17 (2007) 2845–2850.
[41] K. Kitamura, S. Shiratori, Layer-by-layer self-assembled mesoporous PEDOT–PSS and carbon black hybrid films for platinum free dye-sensitizedsolar-cell counter electrodes, Nanotechnology. 22 (2011) 195703.
[42] G. Guan, Z. Yang, L. Qiu, X. Sun, Z. Zhang, J. Ren, H. Peng, Oriented PEDOT:PSS on aligned carbon nanotubes for efficient dye-sensitized solar cells, J. Mater. Chem. A. 1 (2013) 13268–13273.
[43] C.P. Lee, C.A. Lin, T.C. Wei, M.L. Tsai, Y. Meng, C.T. Li, K.C. Ho, C.I. Wu, S.P. Laud, J.H. He, Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes, Nano energy. 18 (2015) 109-117.
[44] C.T. Li, C.P. Lee, Y.Y. Li, M.H. Yeha, K.C. Ho, A composite film of TiS2/PEDOT:PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells, J. Mater. Chem. A. 1 (2013) 14888–14896.
[45] W. Maiaugree, S. Pimanpang, M. Towannang, S. Saekow, W. Jarernboon, V. Amornkitbamrung, Optimization of TiO2 nanoparticle mixed PEDOT–PSS counter electrodes for high efficiency dye sensitized solar cell, J. Non-Cryst. Solids. 358 (2012) 2489–2495.
[46] T. Muto, M. Ikegami, K. Kobayashi, T. Miyasaka, Conductive polymer-based mesoscopic counter electrodes for plastic dye-sensitized solar cells, Chem. Lett. 36 (2007) 804-805.
[47] H. Xu, X. Zhang, C. Zhang, Z. Liu, X. Zhou, S. Pang, X. Chen, S. Dong, Z. Zhang, L. Zhang, P. Han, X. Wang, G. Cui, Nanostructured titanium nitride/PEDOT:PSS composite films as counter electrodes of dye-sensitized solar cells, ACS Appl. Mater. Interfaces. 4 (2012) 1087−1092.
[48] M.H. Yeh, L.Y. Lin, C.P. Lee, H.Y. Wei, C.Y. Chen, C.G. Wu, R. Vittala, K.C. Ho, A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell, J. Mater. Chem. 21 (2011) 19021-19029.
[49] D. Song, M. Li, Y. Li, X. Zhao, B. Jiang, Y. Jiang, Highly transparent and efficient counter electrode using SiO2/ PEDOT−PSS composite for bifacial dye-sensitized solar cells, ACS Appl. Mater. Interfaces. 6 (2014) 7126-7132.
[50] P. Sudhagar, S. Nagarajan, Y.G. Lee, D. Song, T. Son, W. Cho, M. Heo, K. Lee, J. Won, Yong S. Kang, Synergistic catalytic effect of a composite (CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar Cells, ACS Appl. Mater. Interfaces. 3 (2011) 1838-1843.
[51] W. Maiaugree, A. Karaphun, A. Pimsawad, V. Amornkitbamrung, E. Swatsitang, Influence of SrTi1-xCoxO3 NPs on electrocatalytic activity of SrTi1-xCoxO3 NPs/PEDOT-PSS counter electrodes for high efficiency dye sensitized solar cells, Energy. 154 (2018) 182-189.
[52] S. Xu, Y. Luo, G. Liu, G. Qiao, W. Zhong, Z. Xiao, Y. Luo, H. Ou, Bifacial dye-sensitized solar cells using highly transparent PEDOT:PSS films as counter electrodes, Electrochim. Acta. 156 (2015) 20-28.
[53] A.S.A. Ahmed, W. Xiang, X. Hu, C. Qi, I.S. Amiinu, X. Zhao, Si3N4/MoS2-PEDOT:PSS composite counter electrode for bifacial dyesensitized solar cells, Sol. Energy. 173 (2018) 1135–1143.
[54] M. Pietsch, S. Jäckle, S. Christians, Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %, Appl. Phys. A. 115 (2014) 1109–1113.
[55] J. P. Thomas, K. T. Leung, Mixed co-solvent engineering of PEDOT:PSS to enhance its conductivity and hybrid solar cell properties, J. Mater. Chem. A. 4 (2016) 17537-17542.
[56] L. He, Rusli, C. Jiang, H. Wang, D. Lai, Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells, IEEE. Electron. Device. Lett. 32 (2011) 1406 – 1408.
[57] L. Hong, Rusli, X. Wang, H. Zheng, H. Wang, H. Yu, Design guideline of Si Nanohole/PEDOT:PSS hybrid structure for solar cell application, Nanotechnology. 24 (2013) 355301-355306.
[58] S.A. Moiz, A.M. Nahhas, H.D. Um, S.W. Jee, H.K. Cho, S.W. Kim, J.H. Lee, A stamped PEDOT:PSS–silicon nanowire hybrid solar cell, Nanotechnology. 23 (2012) 145401.
[59] K.T. Park, H.J. Kim, M.J. Park, J.H. Jeong, J. Lee, D.G. Choi, J.H. Lee, J.H. Choi, 13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au meshelectrode Sci. Rep. 5 (2015) 12093.
[60] H.J. Syu, S.C. Shiu, C.F. Lin, Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%, Sol. Energy Mater. Sol. Cells. 98 (2012) 267–272.
[61] M. Sharma, P.R. Pudasaini, F.R. Zepeda, D. Elam, A.A. Ayon, Ultrathin, flexible organic−inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS, ACS Appl. Mater. Interfaces. 6 (2014) 4356−4363.
[62] M. Junghanns, J. Plentz, G. Andrä, A. Gawlik, I. Höger, F. Falk, PEDOT:PSS emitters on multicrystalline silicon thin-film absorbers for hybrid solar cells, Appl. Phys. Lett. 106 (2015) 083904.
[63] W. Lu, C. Wang, W. Yue, L. Chen, Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells, Nanoscale. 3 (2011) 3631-3634.
[64] K. A. Nagamatsu, S. Avasthi, J. Jhaveri, J. C. Sturm, A 12% efficient silicon/PEDOT:PSS heterojunction solar cell fabricated at < 100 ◦C, IEEE Journal of Photovoltaics. 4 (2014) 260 – 264. [65] J. Sheng, K. Fan, D. Wang, C. Han, J. Fang, P. Gao, J. Ye, Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells, ACS. Appl. Mater. Interfaces. 6 (2014) 16027−16034. [66] H. Wang, J. Wang, Rusli, Hybrid Si nanocones/PEDOT:PSS solar cell, Nanoscale. Res. Lett. 10 (2015) 191. [67] D. Zielke, A. Pazidis, F. Werner, J. Schmidt, Organic-silicon heterojunctionsolarcellson n-type siliconwafers: The back PEDOT concept, Sol. Energy Mater. Sol. Cells. 131 (2014) 110-116. [68] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji, C. Ye, Flexible Si/PEDOT:PSS hybrid solar cells, Nano. Res. 8 (2015) 3141-3149.