Quantum Dots Based Materials for Water Treatment


Quantum Dots Based Materials for Water Treatment

Chetna Tewari, Sumit Kumar, Neema Pandey, Sandeep Pandey, Nanda Gopal Sahoo

Quantum dot is a new class of nanomaterials having size in nanometers (˂10 nm). This material has excellent photo-catalytic activity towards dyes and pollutants with great absorbance and photoluminescence properties. It shows shifting of peak in UV-FL data which indicates the excitation dependent emission spectra means tunable properties in different wavelength and this property makes it a wonderful probe for sensing application for different heavy metals, pollutants present in water. In this chapter the synthesis, properties, types, application of quantum dots and focus on the research that has been done in field of water treatment with possible future outcomes is discussed.

Metal Detection, Photo-Catalytic Activity, Quantum Dots, Sensor, Water Treatment

Published online 2/1/2020, 25 pages

Citation: Chetna Tewari, Sumit Kumar, Neema Pandey, Sandeep Pandey, Nanda Gopal Sahoo, Quantum Dots Based Materials for Water Treatment, Materials Research Foundations, Vol. 96, pp 280-304, 2021

DOI: https://doi.org/10.21741/9781644901250-11

Part of the book on Quantum Dots

[1] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126 (2004) 12736-12737. https://doi.org/10.1021/ja040082h
[2] Q. Zhang, X. Quan, H. Wang, S. Chen, Y. Su, Z. Li, Constructing a visible-light-driven photocatalytic membrane by gC3N4 quantum dots and TiO2 nanotube array for enhanced water treatment, Sci. Rep. 7 (2017) 3128.
[3] P.S. Saud, B. Pant, A.M. Alam, Z.K. Ghouri, M. Park, H.Y. Kim, Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment, Ceram. Int. 41 (2015) 11953-11959. https://doi.org/10.1016/j.ceramint.2015.06.007
[4] Y. Tang, Y. Su, N. Yang, L. Zhang, Y. Lv, Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water, Anal. Chem. 86 (2014) 4528-4535. https://doi.org/10.1021/ac5005162
[5] B.Y. Yu, S.Y. Kwak, Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts, J. Mater. Chem. 22 (2012) 8345-8353. https://doi.org/10.1039/C2JM16931B
[6] S. Qu, H. Chen, X. Zheng, J. Cao, X. Liu, Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale, 5 (2013), 5514-5518. https://doi.org/10.1039/C3NR00619K
[7] M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134 (2011) 747-750. https://doi.org/10.1021/ja204661r
[8] H. Li, J. Zhai, X. Sun, Sensitive and selective detection of silver (I) ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform, Langmuir. 27 (2011) 4305-4308. https://doi.org/10.1021/la200052t
[9] J. Li, Q. Zhou, L.C. Campos, The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products, Sci. Total Environ. 635 (2018) 1182-1190. https://doi.org/10.1016/j.scitotenv.2018.04.198
[10] R. Li, Y. Ren, P. Zhao, J. Wang, J. Liu, Y. Zhang, Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance, J. Hazard. Mater. 365 (2019) 606-614. https://doi.org/10.1016/j.jhazmat.2018.11.033
[11] J. Liu, J. Li, Y. Jiang, S. Yang, W. Tan, R. Yang, Combination of π–π stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin, Chem. Commun. 47 (2011) 11321-11323. https://doi.org/10.1039/C1CC14445F
[12] Z. Lin, X. Dou, H. Li, Y. Ma, J.M. Lin, Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate, Talanta. 132 (2015) 457-462. https://doi.org/10.1016/j.talanta.2014.09.046
[13] W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, Y. Huang, Carbon nanodots as peroxidase mimetics and their applications to glucose detection, Chem. Commun. 47 (2011) 6695-6697. https://doi.org/10.1039/C1CC11943E
[14] D. Dey, T. Bhattacharya, B. Majumdar, S. Mandani, B. Sharma, T.K. Sarma, Carbon dot reduced palladium nanoparticles as active catalysts for carbon–carbon bond formation, Dalton Trans. 42 (2013) 13821-13825. https://doi.org/10.1039/C3DT51234G
[15] H. Li, Y. Zhang, L. Wang, J. Tian, X. Sun, Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform, Chem. Commun. 47 (2011) 961-963. https://doi.org/10.1039/C0CC04326E
[16] S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions, Adv. Mater. 24 (2012) 2037-2041. https://doi.org/10.1002/adma.201200164
[17] K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine, Chem. Eur. J. 19 (2013) 7243-7249. https://doi.org/10.1002/chem.201300042
[18] F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement, Acc. Chem. Res. 33 (2000) 773-780. https://doi.org/10.1021/ar970220q
[19] S. Nagaraja, P. Matagne, V.Y. Thean, J.P. Leburton, Y.H. Kim, R.M. Martin, Shell-filling effects and Coulomb degeneracy in planar quantum-dot structures, Phys. Rev. B. 56 (1997) 15752. https://doi.org/10.1103/PhysRevB.56.15752
[20] P.V. Joglekar, P.V. Mandalkar , D.J. Nikam, M.A. Pande, N.S. Dubal, A review article on quantum dots: Synthesis, properties and application, International Journal of Research in Advent Technology, 7 (2019) 2321-9637. https://doi.org/10.32622/ijrat.712019113
[21] K.L. Wang, D. Cha, J. Liu, C. Chen, Ge/Si self-assembled quantum dots and their optoelectronic device applications, P IEEE. 95 (2007) 1866-1883. https://doi.org/10.1109/JPROC.2007.900971
[22] X. Wang, Y. Feng, P. Dong, J. Huang, A mini review on carbon quantum dots: preparation, properties and electrocatalytic application, Front. Chem. 7 (2019) 671. https://doi.org/10.3389/fchem.2019.00671
[23] C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases. 2 (2007) 17-71. https://doi.org/10.1116/1.2815690
[24] J.R. Kim, E. Kan, Heterogeneous photo-Fenton oxidation of methylene blue using CdS-carbon nanotube/TiO2 under visible light, J. Ind. Eng. Chem. 21 (2015) 644-652. https://doi.org/10.1016/j.jiec.2014.03.032
[25] S. Yang, J. Sun, X. Li, W. Zhou, Z. Wang, P. He, G. Ding, X. Xie, Z. Kang, M. Jiang, Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection, J. Mater. Chem. A. 2 (2014) 8660-8667. https://doi.org/10.1039/C4TA00860J
[26] A.M. Schwenke, S. Hoeppener, U.S. Schubert, Synthesis and modification of carbon nanomaterials utilizing microwave heating, Adv. Mater. 27 (2015) 4113-4141. https://doi.org/10.1002/adma.201500472
[27] S. Rai, B.K. Singh, P. Bhartiya, A. Singh, H. Kumar, P.K. Dutta, G.K. Mehrotra, Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging, J. Lumin. 190 (2017)492-503. https://doi.org/10.1016/j.jlumin.2017.06.008
[28] G. Zhao, C. Li, X. Wu, J. Yu, X. Jiang, W. Hu, F. Jiao, Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue, Appl. Surf. Sci. 434 (2018) 251-259. https://doi.org/10.1016/j.apsusc.2017.10.181
[29] Z. Shen, C. Zhang, X. Yu, J. Li, Z. Wang, Z. Zhang, B. Liu, Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection, J. Mater. Chem. C. 6 (2018) 9636-9641. https://doi.org/10.1039/C8TC02982B
[30] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electro chemiluminescence properties, Chem. Commun. 34 (2009) 5118-5120. https://doi.org/10.1039/B907612C
[31] S. Chen, Y. Wu, G. Li, J. Wu, G. Meng, X. Guo, Z. Liu, A novel strategy for preparation of an effective and stable heterogeneous photo-Fenton catalyst for the degradation of dye, Appl. Clay. Sci. 136 (2017) 103-111. https://doi.org/10.1016/j.clay.2016.11.016
[32] J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light, New J. Chem. 36 (2012) 97-101. https://doi.org/10.1039/C1NJ20658C
[33] T.L. Lai, Y.L. Lai, C.C. Lee, Y.Y. Shu, C.B. Wang, Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol, Catal. Today. 131 (2008) 105-110. https://doi.org/10.1016/j.cattod.2007.10.039
[34] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging, Angew. Chem. 52 (2013) 3953-3957. https://doi.org/10.1002/ange.201300519
[35] W.J. Niu, Y. Li, R.H. Zhu, D. Shan, Y.R. Fan, X.J. Zhang, Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging, Sens. Actuators B Chem. 218 (2015) 229-236. https://doi.org/10.1016/j.snb.2015.05.006
[36] J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, L. Tan, Q. Xie, Y. Zhang, S. Yao, Electrochemical synthesis of carbon nanodots directly from alcohols, Chem. Eur. J. 20 (17) 4993-4999. https://doi.org/10.1002/chem.201304869
[37] S. Ahirwar, S. Mallick, D. Bahadur, Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots, ACS Omega. 2 (2017) 8343-8353. https://doi.org/10.1021/acsomega.7b01539
[38] S. Anwar, H. Ding, M. Xu, X. Hu, Z. Li, J. Wang, L. Liu, L. Jiang, D. Wang, C. Dong, M. Yan, Recent Advances in Synthesis, Optical Properties and Biomedical Applications of Carbon Dots, ACS Appl. Bio Mater. 2 (2019) 2317-2338. https://doi.org/10.1021/acsabm.9b00112
[39] X. Luo, Y. Han, X. Chen, W. Tang, T. Yue, Z. Li, Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review, Trends Food Sci. Tech. (2019). https://doi.org/10.1016/j.tifs.2019.11.017
[40] J. Zhou, C. Booker, R. Li, X. Zhou, T. K. Sham, X. Sun, Z. Ding, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs), J. Am. Chem. Soc. 129 (2007) 744-745. https://doi.org/10.1021/ja0669070
[41] D. B. Shinde, V. K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes, Chem. Eur. J. 18 (2012) 12522-12528. https://doi.org/10.1002/chem.201201043
[42] L. Bao, Z. L. Zhang, Z. Q. Tian, L. Zhang, C. Liu, Y. Lin, D. W. Pang, Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism, Adv. Mater. 23 (2011) 5801-5806. https://doi.org/10.1002/adma.201102866
[43] L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite, J. Am. Chem. Soc. 131 (2009) 4564-4565. https://doi.org/10.1021/ja809073f
[44] H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, Z. Kang, Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property, Dalton Trans. 41 (2012) 9526-9531. https://doi.org/10.1039/C2DT30985H
[45] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design, Angew. Chem. 49 (2010) 4430-4434. https://doi.org/10.1002/ange.200906154
[46] J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, S. Yao, Electrochemical synthesis of carbon nanodots directly from alcohols, Chem. Eur. J. 20 (2014) 4993-4999. https://doi.org/10.1002/chem.201304869
[47] Y., Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. 2 (2014) 6921-6939. https://doi.org/10.1039/C4TC00988F
[48] L. Zou, Z. Gu, M. Sun, Review of the application of quantum dots in the heavy-metal detection, Toxicol Environ. Chem. 97 (2015) 477-490. https://doi.org/10.1080/02772248.2015.1050201
[49] T.R. Pisanic Ii, Y. Zhang, T.H. Wang, Quantum dots in diagnostics and detection: principles and paradigms, Analyst. 139 (2014) 2968-2981. https://doi.org/10.1039/C4AN00294F
[50] H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates, Chem. Mater. 21 (2009) 5563-5565. https://doi.org/10.1021/cm901593y
[51] Z. Gan, X. Wu, G. Zhou, J. Shen, P.K. Chu, Is there real upconversion photoluminescence from graphene quantum dots?, Adv. Opt. Mater, 1 (2013) 554-558. https://doi.org/10.1002/adom.201300152
[52] A. Jaiswal, S.S. Ghsoh, A. Chattopadhyay, Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal, Langmuir, 28 (2012) 15687-15696. https://doi.org/10.1021/la3027573
[53] Y. Wu, M. Xu, X. Chen, S. Yang, H. Wu, J. Pan, X. Xiong, CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light, Nanoscale. 8 (2016) 440-450. https://doi.org/10.1039/C5NR05748E
[54] M.P. Wei, H. Chai, Y.L. Cao, D.Z. Jia, Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue, J. Colloid Interface Sci. 524 (2018) 297-305. https://doi.org/10.1016/j.jcis.2018.03.094
[55] P. Tan, J. Sun, Y. Hu, Z. Fang, Q. Bi, Y. Chen, J. Cheng, Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes, J. Hazard. Mater. 297 (2015) 251-260. https://doi.org/10.1016/j.jhazmat.2015.04.068
[56] M. Li, R. Cao, A. Nilghaz, L. Guan, X. Zhang, W. Shen, “Periodic-table-style” paper device for monitoring heavy metals in water. Anal. Chem. 87 (2015) 2555-2559. https://doi.org/10.1021/acs.analchem.5b00040
[57] J.P. Devadhasan, J. Kim, A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection, Sens. Actuators B-Chem. 273 (2018) 18-24. https://doi.org/10.1016/j.snb.2018.06.005
[58] Y. Wu, G.P. Yang, X. Zhou, J. Li, Y. Ning, Y.Y. Wang, Three new luminescent Cd (II)-MOFs by regulating the tetracarboxylate and auxiliary co-ligands, displaying high sensitivity for Fe3+ in aqueous solution, Dalton Trans. 44 (2015) 10385-10391. https://doi.org/10.1039/C5DT00492F
[59] G. Zhang, H. Zhang, J. Zhang, W. Ding, J. Xu, Y. Wen, Highly selective fluorescent sensor based on electro synthesized oligo (1-pyreneboronic acid) enables ultra-trace analysis of Cu2+ in environment and agro-product samples, Sens. Actuators B-Chem. 253 (2017) 224-230. https://doi.org/10.1016/j.snb.2017.06.144
[60] L. Fan, Y. Wang, L. Li, J. Zhou, Carbon quantum dots activated metal organic frameworks for selective detection of Cu (II) and Fe (III), Colloids Surf. A Physicochem. Eng. Asp. 588 (2020) 124378. https://doi.org/10.1016/j.colsurfa.2019.124378
[61] Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, G. Chen, Graphene quantum dot as a green and facile sensor for free chlorine in drinking water, Anal. Chem. 84 (2012) 8378-8382. https://doi.org/10.1021/ac301945z
[62] P. Song, L. Zhang, H. Long, M. Meng, T. Liu, Y. Yin, R. Xi, A multianalyte fluorescent carbon dots sensing system constructed based on specific recognition of Fe (III) ions, RSC Advances 7 (2017) 28637-28646. https://doi.org/10.1039/C7RA04122E
[63] Y. Chen, Y. Wu, B. Weng, B. Wang, C. Li, Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe (III) ions detection and cell imaging, Sens. Actuators B-Chem. 223 (2016) 689-696. https://doi.org/10.1016/j.snb.2015.09.081
[64] Y. Liu, Y. Zhao, Y. Zhang, One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection, Sens. Actuators B-Chem. 196 (2014) 647-652. https://doi.org/10.1016/j.snb.2014.02.053
[65] A. Suryawanshi, M. Biswal, D. Mhamane, R. Gokhale, S. Patil, D. Guin, S. Ogale, Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions, Nanoscale. 6 (2014) 11664-11670. https://doi.org/10.1039/C4NR02494J
[66] X. Hai, J. Feng, X. Chen, J. Wang, Tuning the optical properties of graphene quantum dots for biosensing and bioimaging, J. Mater. Chem. 6 (2018) 3219-3234. https://doi.org/10.1039/C8TB00428E
[67] R. Liu, J. Zhao, Z. Huang, L. Zhang, M. Zou, B. Shi, S. Zhao, Nitrogen and phosphorus co-doped graphene quantum dots as a nano-sensor for highly sensitive and selective imaging detection of nitrite in live cell, Sens. Actuators B-Chem. 240 (2017) 604-612. https://doi.org/10.1016/j.snb.2016.09.008
[68] M. Liu, T. Liu, Y. Li, H. Xu, B. Zheng, D. Wang, J. Du, D. Xiao, A FRET chemsensor based on graphene quantum dots for detecting and intracellular imaging of Hg2+, Talanta. 143 (2015) 442-449. https://doi.org/10.1016/j.talanta.2015.05.023
[69] A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.H. Kim, K.H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing, Adv. Funct. Mater. 24 (2014) 3021-3026. https://doi.org/10.1002/adfm.201303441
[70] H. Sun, N. Gao, L. Wu, J. Ren, W. Wei, X. Qu, Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions, Chem. Eur. J. 19 (2013) 13362-13368. https://doi.org/10.1002/chem.201302268
[71] C. Sun, Y. Zhang, P. Wang, Y. Yang, Y. Wang, J. Xu, Y. Wang, W.Y. William, Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe3+ , Nanoscale Res. Lett. 11 (2016) 110. https://doi.org/10.1186/s11671-016-1326-8
[72] R. Guo, S. Zhou, Y. Li, X. Li, L. Fan, N.H. Voelcker, Rhodamine-functionalized graphene quantum dots for detection of Fe3+ in cancer stem cells, ACS Appl. Mater. Interfaces. 7 (2015) 23958-23966. https://doi.org/10.1021/acsami.5b06523
[73] Z.S. Qian,, X.Y. Shan, L.J. Chai, J.R. Chen, H. Feng, A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion, ‎Biosens. Bioelectron. 68 (2015) 225-231. https://doi.org/10.1016/j.bios.2014.12.057
[74] L. Lin, X. Song, Y. Chen, M. Rong, T. Zhao, Y. Jiang, Y. Wang, X. Chen, One-pot synthesis of highly greenish-yellow fluorescent nitrogen-doped graphene quantum dots for pyrophosphate sensing via competitive coordination with Eu3+ ions, Nanoscale. 7 (2015) 15427-15433. https://doi.org/10.1039/C5NR04005A
[75] Q. Zhang, C. Song, T. Zhao, H.W. Fu, H.Z. Wang, Y.J. Wang, D.M. Kong, Photoluminescent sensing for acidic amino acids based on the disruption of graphene quantum dots/europium ions aggregates, ‎Biosens. Bioelectron. 65, (2015) 204-210. https://doi.org/10.1016/j.bios.2014.10.043
[76] H. Liu, W. Na, Z. Liu, X. Chen, X. Su, A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe, ‎Biosens. Bioelectron. 92 (2017) 229-233. https://doi.org/10.1016/j.bios.2017.02.005
[77] Z.B. Qu, X. Zhou, L. Gu, R. Lan, D. Sun, D. Yu, G. Shi, Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate, Chem. Commun. 49 (2013) 9830-9832. https://doi.org/10.1039/C3CC44393K
[78] L. Wang, W. Li, B. Wu, Z. Li, S. Wang, Y. Liu, D. Pan, M. Wu, Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing, Chem. Eng. J. 300 (2016) 75-82. https://doi.org/10.1016/j.cej.2016.04.123
[79] Y. Zhang, H.Y. Shen, X. Hai, X.W. Chen, J.H. Wang, Polyhedral oligomeric silsesquioxane polymer-caged silver nanoparticle as a smart colorimetric probe for the detection of hydrogen sulfide, Anal. Chem. 89 (2016) 1346-1352. https://doi.org/10.1021/acs.analchem.6b04407
[80] D. Pan, L. Guo, J. Zhang, C. Xi, Q. Xue, H. Huang, J. Li, Z. Zhang, W. Yu, Z. Chen, Z. Li, Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence, J. Mater. Chem. 22 (2012) 3314-3318. https://doi.org/10.1039/C2JM16005F
[81] K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label‐free detection of iron (III) ions and dopamine, Chem. Eur. J 19 (2013) 7243-7249. https://doi.org/10.1002/chem.201300042
[82] H. Li, J. Zhai, X. Sun, Sensitive and selective detection of silver (I) ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform, Langmuir, 27 (2011) 4305-4308. https://doi.org/10.1021/la200052t
[83] Z. Lin, X. Dou, H. Li, Y. Ma, J.M. Lin, Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate, Talanta, 132 (2015) 457-462. https://doi.org/10.1016/j.talanta.2014.09.046