Toxins and Pollutants Detection on Biosensor Surfaces


Toxins and Pollutants Detection on Biosensor Surfaces

Amal I. Hassan, Hosam M. Saleh

Detecting toxins and pollutants is a field of biological sensing investigation. A rapid responsive and reliable biosensor has become an urgent requirement to help detect pathogenic bacteria and toxins that cause dangerous diseases. Recently studies have developed a multi-channel surface plasma resonance sensor for the simultaneous quantitative disclosure of food-borne bacterial pathogens. Now, biosensors are a dominant alternative to traditional analytic procedures to control both natural water quality and the water treatment used by the food manufacturing during the production method, and wastewater before it is released into natural waterways. The most significant attributes of biosensors are the immense sensitivity, short time interval, precision, and comparatively insignificant cost. Biometric sensors will discover the existence or coexist the content of varied cytotoxic materials (insecticides, serious metals, etc.) in both water and food. The existence of pollutants, particularly toxic metal ions within the water used in food manufacture processes, may be a potential field for biosensor applications. This chapter summarizes the evolution and application of biosensors to regulate and discover toxins and different pollutants. It will highlight the various biosensors and the future sight of this field.

Biosensor, Toxins, Pollutants, Pathogens, Food-Borne

Published online 12/20/2020, 23 pages

Citation: Amal I. Hassan, Hosam M. Saleh, Toxins and Pollutants Detection on Biosensor Surfaces, Materials Research Foundations, Vol. 92, pp 197-219, 2021


Part of the book on Toxic Gas Sensors and Biosensors

[1] M. Badihi-Mossberg, V. Buchner, J. Rishpon, Electrochemical biosensors for pollutants in the environment, Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal. 19 (2007) 2015–2028.
[2] S.J. Pearton, F. Ren, Y.L. Wang, B.H. Chu, K.H. Chen, C.Y. Chang, W. Lim, J. Lin, D.P. Norton, Recent advances in wide bandgap semiconductor biological and gas sensors, Prog. Mater. Sci. 55 (2010) 1–59.
[3] F. Scheller, F. Schubert, Biosensors, Elsevier, 1991. 0958-1669(91)90054-9
[4] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chem. Soc. Rev. 39 (2010) 1747–1763.
[5] S. Neethirajan, Recent advances in wearable sensors for animal health management, Sens. Bio-Sensing Res. 12 (2017) 15–29. 10.1016/j.sbsr.2016.11.004
[6] M. Keusgen, Biosensors: new approaches in drug discovery, Naturwissenschaften. 89 (2002) 433–444.
[7] A. Roda, P. Pasini, M. Guardigli, M. Baraldini, M. Musiani, M. Mirasoli, Bio-and chemiluminescence in bioanalysis, Fresenius. J. Anal. Chem. 366 (2000) 752–759.
[8] J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective, Biosens. Bioelectron. 20 (2005) 2435–2453. 10.1016/j.bios.2004.11.012
[9] A. Juzgado, A. Soldà, A. Ostric, A. Criado, G. Valenti, S. Rapino, G. Conti, G. Fracasso, F. Paolucci, M. Prato, Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker, J. Mater. Chem. B. 5 (2017) 6681–6687.
[10] G. Valenti, E. Rampazzo, E. Biavardi, E. Villani, G. Fracasso, M. Marcaccio, F. Bertani, D. Ramarli, E. Dalcanale, F. Paolucci, An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer, Faraday Discuss. 185 (2015) 299–309.
[11] S.P. Mohanty, E. Kougianos, Biosensors: a tutorial review, Ieee Potentials. 25 (2006) 35–40.
[12] F.-G. Banica, Chemical sensors and biosensors: fundamentals and applications, John Wiley & Sons, 2012.
[13] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification, Anal. Lett. 34 (2001) 635–659.
[14] P.D. Patel, (Bio) sensors for measurement of analytes implicated in food safety: a review, TrAC Trends Anal. Chem. 21 (2002) 96–115.
[15] Z. Farka, T. Juřík, D. Kovář, L. Trnková, P. Skládal, Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges, Chem. Rev. 117 (2017) 9973–10042.
[16] M.S. Thakur, K. V Ragavan, Biosensors in food processing, J. Food Sci. Technol. 50 (2013) 625–641.
[17] S.R. Mikkelsen, E. Cortón, Bioanalytical chemistry, John Wiley & Sons, 2016.
[18] C. Chen, X.-L. Zhao, Z.-H. Li, Z.-G. Zhu, S.-H. Qian, A.J. Flewitt, Current and emerging technology for continuous glucose monitoring, Sensors. 17 (2017) 182.
[19] N. Gupta, S. Sharma, I.A. Mir, D. Kumar, Advances in sensors based on conducting polymers, (2006).
[20] W.E. Morf, The principles of ion-selective electrodes and of membrane transport, Elsevier, 2012.
[21] B.R. Eggins, Biosensors: an introduction, Springer-Verlag, 2013. .
[22] F.G. Barth, J.A.C. Humphrey, T.W. Secomb, Sensors and sensing in biology and engineering, Springer Science & Business Media, 2003.
[23] H. Mansy, R. Sandler, Sensors and sensor assemblies for monitoring biological sounds and electric potentials, (2004).
[24] S. Ikeda, T. Yoshioka, S. Nankai, H. Tsutsumi, H. Baba, Y. Tokuno, S. Miyazaki, Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same, (1997). com/patent/US5582697A/en
[25] M.M. Rahman, A. Umar, K. Sawada, Development of amperometric glucose biosensor based on glucose oxidase co-immobilized with multi-walled carbon nanotubes at low potential, Sensors Actuators B Chem. 137 (2009) 327–333.
[26] S. Vigneshvar, C.C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent advances in biosensor technology for potential applications–an overview, Front. Bioeng. Biotechnol. 4 (2016) 11.
[27] J.S. Schultz, Optical sensor of plasma constituents, (1982).
[28] P. Banerjee, A.K. Bhunia, Mammalian cell-based biosensors for pathogens and toxins, Trends Biotechnol. 27 (2009) 179–188. j.tibtech.2008.11.006
[29] J.M. Hellawell, Biological indicators of freshwater pollution and environmental management, Springer Science & Business Media, 2012.
[30] H. Sharma, M. Agarwal, M. Goswami, A. Sharma, S.K. Roy, R. Rai, M.S. Murugan, Biosensors: tool for food borne pathogen detection, Vet. World. 6 (2013) 968.
[31] F.R. Spellman, The science of environmental pollution, Crc Press, 2017.
[32] D. Dhaniram, Chemicals of emerging concern in household products: a case study on the disposal of cosmetics in the United Kingdom, (2011).
[33] S. Hassani, S. Momtaz, F. Vakhshiteh, A.S. Maghsoudi, M.R. Ganjali, P. Norouzi, M. Abdollahi, Biosensors and their applications in detection of organophosphorus pesticides in the environment, Arch. Toxicol. 91 (2017) 109–130.
[34] I. Karlsson, Cytokines as diagnostic biomarkers in canine pyometra and sepsis, 2015.
[35] R. Khot, V. Chitre, Survey on air pollution monitoring systems, in: 2017 Int. Conf. Innov. Information, Embed. Commun. Syst., IEEE, 2017: pp. 1–4.
[36] I. Ahmed, Z. Akram, M.H. Bule, H. Iqbal, Advancements and potential applications of microfluidic approaches—a review, Chemosensors. 6 (2018) 46.
[37] M. Gronow, Biosensors, Trends Biochem. Sci. 9 (1984) 336–340.
[38] D.J. Pike, N. Kapur, P.A. Millner, D.I. Stewart, Flow cell design for effective biosensing, Sensors. 13 (2013) 58–70.
[39] A. Kot, J. Namiesńik, The role of speciation in analytical chemistry, TrAC Trends Anal. Chem. 19 (2000) 69–79.
[40] E. Valdman, I.G.R. Gutz, Bioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generator, Sensors Actuators B Chem. 133 (2008) 656–663. j.snb.2008.03.031
41] S.P. McGrath, B. Knight, K. Killham, S. Preston, G.I. Paton, Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux-based biosensor, Environ. Toxicol. Chem. An Int. J. 18 (1999) 659–663.
[42] E.L.S. Wong, E. Chow, J.J. Gooding, The electrochemical detection of cadmium using surface-immobilized DNA, Electrochem. Commun. 9 (2007) 845–849.
[43] P. Pal, D. Bhattacharyay, A. Mukhopadhyay, P. Sarkar, The detection of mercury, cadium, and arsenic by the deactivation of urease on rhodinized carbon, Environ. Eng. Sci. 26 (2009) 25–32.
[44] D. Claude, G. Houssemeddine, B. Andriy, C. Jean-Marc, Whole cell algal biosensors for urban waters monitoring, in: Novatech, 2007: pp. 1507–1514.
[45] T.G. Gruzina, A.M. Zadorozhnyaya, G.A. Gutnik, V. V Vember, Z.R. Ulberg, N.I. Kanyuk, N.F. Starodub, A bacterial multisensor for determination of the contents of heavy metals in water, J. Water Chem. Technol. 29 (2007) 50–53.
[46] M.R. Knecht, M. Sethi, Bio-inspired colorimetric detection of Hg 2+ and Pb 2+ heavy metal ions using Au nanoparticles, Anal. Bioanal. Chem. 394 (2009) 33–46.
[47] R. Ilangovan, D. Daniel, A. Krastanov, C. Zachariah, R. Elizabeth, Enzyme based biosensor for heavy metal ions determination, Biotechnol. Biotechnol. Equip. 20 (2006) 184–189.
[48] S. Gäberlein, F. Spener, C. Zaborosch, Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides, Appl. Microbiol. Biotechnol. 54 (2000) 652–658.
[49] N. Verma, M. Singh, A disposable microbial based biosensor for quality control in milk, Biosens. Bioelectron. 18 (2003) 1219–1224.
[50] L. Rotariu, C. Bala, V. Magearu, New potentiometric microbial biosensor for ethanol determination in alcoholic beverages, Anal. Chim. Acta. 513 (2004) 119–123.
[51] H.B. Yildiz, J. Castillo, D.A. Guschin, L. Toppare, W. Schuhmann, Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer, Microchim. Acta. 159 (2007) 27–34.
[52] F. Karim, A.N.M. Fakhruddin, Recent advances in the development of biosensor for phenol: a review, Rev. Environ. Sci. Bio/Technology. 11 (2012) 261–274.
[53] S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Biosensors as useful tools for environmental analysis and monitoring, Anal. Bioanal. Chem. 386 (2006) 1025–1041.
[54] G.A.E. Mostafa, Electrochemical biosensors for the detection of pesticides, Open Electrochem. J. 2 (2010).]
[55] A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnol. Adv. 30 (2012) 489–511.
[56] A. Hayat, J.L. Marty, Aptamer based electrochemical sensors for emerging environmental pollutants, Front. Chem. 2 (2014) 41. /fchem.2014.00041
[57] A.C. Patel, S. Li, J.-M. Yuan, Y. Wei, In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications, Nano Lett. 6 (2006) 1042–1046.
[58] A.P. Wacoo, D. Wendiro, P.C. Vuzi, J.F. Hawumba, Methods for detection of aflatoxins in agricultural food crops, J. Appl. Chem. 2014 (2014).
[59] A.F. Sahab, A.I. Waly, M.M. Sabbour, L.S. Nawar, Synthesis, antifungal and insecticidal potential of chitosan (CS)-g-poly (acrylic acid)(PAA) nanoparticles against some seed borne fungi and insects of soybean, Int. J. ChemTech Res. 8 (2015) 589–598.
[60] J. Yang, J. Li, Y. Jiang, X. Duan, H. Qu, B. Yang, F. Chen, D. Sivakumar, Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products, Crit. Rev. Food Sci. Nutr. 54 (2014) 64–83.
[61] C. Kosawang, M. Karlsson, B. Jensen, H. Vélëz, P.H. Rasmussen, D.B. Collinge, D.F. Jensen, Detoxification of the Fusarium mycotoxin zearalenone is an important trait of Clonostachys rosea in biocontrol of Fusarium foot rot of barley., in: Work. Gr. “Biological Control Fungal Bac Terial Plant Pathog. Proc. Meet. Reims, Fr. 24–2 7 June 2012, 2013: pp. 133–136.
[62] G.P. Munkvold, Fusarium species and their associated mycotoxins, in: Mycotoxigenic Fungi, Springer, 2017: pp. 51–106.
[63] W.M. Haschek, J.C. Haliburton, Fusarium moniliforme and zearalenone toxicoses in domestic animals: A review, in: Diagnosis of Mycotoxicoses, Springer, 1986: pp. 213–235.
[64] I.E. Yates, J.K. Porter, Bacterial bioluminescence as a bioassay for mycotoxins., Appl. Environ. Microbiol. 44 (1982) 1072–1075.
[65] R. Zhu, K. Feussner, T. Wu, F. Yan, P. Karlovsky, X. Zheng, Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum, Food Chem. 179 (2015) 1–5.
[66] M.A. El-Shafie, Method and system for processing a biomass for producing biofuels and other products, (2019). US20120122164A1/en
[67] N.K. Rao, J. Hanson, M.E. Dulloo, K. Ghosh, A. Nowell, Manual of seed handling in genebanks, Bioversity International, 2006.
[68] A.J. Haes, A. Terray, G.E. Collins, Bead-assisted displacement immunoassay for staphylococcal enterotoxin B on a microchip, Anal. Chem. 78 (2006) 8412–8420.
[69] E.P. Diamandis, T.K. Christopoulos, Immunoassay, Academic Press, 1996.
[70] A.E. Herr, D.J. Throckmorton, A.A. Davenport, A.K. Singh, On-chip native gel electrophoresis-based immunoassays for tetanus antibody and toxin, Anal. Chem. 77 (2005) 585–590.
[71] J.W. Grate, C.J. Bruckner-Lea, D.A. Holman, Flow-controlled magnetic particle manipulation, (2011).
[72] O. Zielinski, J.A. Busch, A.D. Cembella, K.L. Daly, J. Engelbrektsson, A.K. Hannides, H. Schmidt, Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens, Ocean Sci. 5 (2009) 329.
[73] P. Das, M. Das, S.R. Chinnadayyala, I.M. Singha, P. Goswami, Recent advances on developing 3rd generation enzyme electrode for biosensor applications, Biosens. Bioelectron. 79 (2016) 386–397.
[74] P.J. Delves, S.J. Martin, D.R. Burton, I.M. Roitt, Roitt’s essential immunology, John Wiley & Sons, 2017.
[75] G.A. Brooks, The science and translation of lactate shuttle theory, Cell Metab. 27 (2018) 757–785.
[76] A.M. Pappa, D. Ohayon, A. Giovannitti, I.P. Maria, A. Savva, I. Uguz, J. Rivnay, I. McCulloch, R.M. Owens, S. Inal, Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor, Sci. Adv. 4 (2018) eaat0911.
[77] J. Janata, Principles of chemical sensors, Springer Science & Business Media, 2010. 1
[78] S. Kintzios, P. Banerjee, Mammalian cell-based sensors for high throughput screening for detecting chemical residues, pathogens, and toxins in food, in: High Throughput Screen. Food Saf. Assess., Elsevier, 2015: pp. 123–146.
[79] P. Biswas, C.-Y. Wu, Nanoparticles and the environment, J. Air Waste Manage. Assoc. 55 (2005) 708–746.
[80] E.S. Beach, Z. Cui, P.T. Anastas, Green chemistry: A design framework for sustainability, Energy Environ. Sci. 2 (2009) 1038–1049.
[81] H. Chen, R. Yada, Nanotechnologies in agriculture: new tools for sustainable development, Trends Food Sci. Technol. 22 (2011) 585–594.
[82] R.J. Miller, S. Bennett, A.A. Keller, S. Pease, H.S. Lenihan, TiO2 nanoparticles are phototoxic to marine phytoplankton, PLoS One. 7 (2012).
[83] Y. Zhou, Y. Fang, R.P. Ramasamy, Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development, Sensors (Switzerland). 19 (2019).
[84] A.A. Chaudhari, S. deb Nath, K. Kate, V. Dennis, S.R. Singh, D.R. Owen, C. Palazzo, R.D. Arnold, M.E. Miller, S.R. Pillai, A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide, J. Nanobiotechnology. 14 (2016) 58.
[85] P. Makaram, D. Owens, J. Aceros, Trends in nanomaterial-based non-invasive diabetes sensing technologies, Diagnostics. 4 (2014) 27–46.
[86] L.B. Sagle, L.K. Ruvuna, J.A. Ruemmele, R.P. Van Duyne, Advances in localized surface plasmon resonance spectroscopy biosensing, Nanomedicine. 6 (2011) 1447–1462.
[87] P. Shukla, V. Nigam, R. Gupta, A. Singh, R.C. Kuhad, Sustainable enzyme technology for environment: biosensors for monitoring of pollutants and toxic compounds, in: Biotechnol. Environ. Manag. Resour. Recover., Springer, 2013: pp. 69–76.
[88] N. Li, C.-M. Ho, Patterning functional proteins with high selectivity for biosensor applications, JALA J. Assoc. Lab. Autom. 13 (2008) 237–242.
[89] Y. Chen, S. Zhou, L. Li, J. Zhu, Nanomaterials-based sensitive electrochemiluminescence biosensing, Nano Today. 12 (2017) 98–115.
[90] Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, Y. Lin, Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials, Biosens. Bioelectron. 76 (2016) 195–212.
[91] E. Vunain, A.K. Mishra, B.B. Mamba, Fundamentals of chitosan for biomedical applications, in: J.A. Jennings, J.D. Bumgardner (Eds.) Chitosan based biomater. Vol. 1, Elsevier, 2017: pp. 3–30.
[92] J. Du, L. Jiang, Q. Shao, X. Liu, R.S. Marks, J. Ma, X. Chen, Colorimetric detection of mercury ions based on plasmonic nanoparticles, Small. 9 (2013) 1467–1481.
[93] P. Valentini, P.P. Pompa, Gold nanoparticles for naked-eye DNA detection: smart designs for sensitive assays, RSC Adv. 3 (2013) 19181–19190.
[94] M. Sabela, S. Balme, M. Bechelany, J. Janot, K. Bisetty, A review of gold and silver nanoparticle-based colorimetric sensing assays, Adv. Eng. Mater. 19 (2017) 1700270.
[95] C.C. Huang, H.-T. Chang, Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury (II) in aqueous solution, Anal. Chem. 78 (2006) 8332–8338.
[96] J. Yao, M. Yang, Y. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy, Chem. Rev. 114 (2014) 6130–6178.
[97] X. Wang, X. Lu, J. Chen, Development of biosensor technologies for analysis of environmental contaminants, Trends Environ. Anal. Chem. 2 (2014) 25–32.
[98] V.K. Nigam, P. Shukla, Enzyme based biosensors for detection of environmental pollutants-A review, J. Microbiol. Biotechnol. 25 (2015) 1773–1781.