Carbon Materials for Gas and Bio-Sensing Applications Beyond Graphene

$30.00

Carbon Materials for Gas and Bio-Sensing Applications Beyond Graphene

Ria Majumdar, Pinku Chandra Nath

The development of technology in the area of material science and nanotechnology is a worldwide concern to researchers for generating a substance by synthesizing nanoparticles with required properties. Carbonaceous materials have gained numerous interests because of their direct electron or charge transfer capacity between active site reception and functionalized nanoparticles without involvement of a mediator. However, among all existing materials, carbon nanotubes have been proven to elite beyond graphene. Carbon nanotubes (CNTs) possess extraordinary electrochemical biosensing and gas sensing due to their specific properties. This encourages researchers to gain new ideas about construction and development of immunosensors, genosensors, enzymatic biosensors and specific gas sensors based on above nanoparticles. Qualification of working electrode via incorporation of two or more of these nanoparticles gives enhanced stability, better sensitivity and functionality to the sensor. This chapter reviews basic information about sensors, their types, functionalization, fabrication mechanisms and applications for future prospective.

Keywords
Graphene, Biosensors, Gas Sensors, Carbon Nanotubes, Nanomaterials, Metal Oxides

Published online 12/20/2020, 30 pages

Citation: Ria Majumdar, Pinku Chandra Nath, Carbon Materials for Gas and Bio-Sensing Applications Beyond Graphene, Materials Research Foundations, Vol. 92, pp 39-68, 2021

DOI: https://doi.org/10.21741/9781644901175-2

Part of the book on Toxic Gas Sensors and Biosensors

References
[1] W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene?, Angew. Chem. Int. Ed. 49 (2010) 2114-2138. https://doi.org/ 10.1002/anie.200903463
[2] L. Wang, Q. Zhang, S. Chen, F. Xu, S. Chen, J. Jia, H. Tan, H. Hou, Y. Song, Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials, Anal. Chem. 86 (2014) 1414-1421. https://doi.org/10.1021/ac401563m
[3] S. Mao, G. Lu, J. Chen, Nanocarbon-based gas sensors: progress and challenges, J. Mater. Chem. A 2 (2014) 5573-5579. https://doi.org/ 10.1039/C3TA13823B
[4] D.H. Seo, A.E. Rider, S. Kumar, L.K. Randeniya, K. Ostrikov, Vertical graphene gas-and bio-sensors via catalyst-free, reactive plasma reforming of natural honey, Carbon 60 (2013) 221-228. https://doi.org/ 10.1016/j.carbon.2013.04.015
[5] I. Heller, A.M. Janssens, J. Männik, E.D. Minot, S.G. Lemay, C. Dekker, Identifying the mechanism of biosensing with carbon nanotube transistors, Nano Lett. 8 (2008) 591-595. https://doi.org/ 10.1021/nl072996i
[6] S. Hrapovic, Y. Liu, K.B. Male, J.H. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Anal. Chem. 76 (2004) 1083-1088. https://doi.org/ 10.1021/ac035143t
[7] M. Meyyappan, Carbon nanotubes: science and applications, CRC press2004
[8] D. Vijay, G.N. Sastry, Exploring the size dependence of cyclic and acyclic π-systems on cation–π binding, Phys. Chem. Chem. Phys. 10 (2008) 582-590. https://doi.org/10.1039/B713703F
[9] U.D. Priyakumar, G.N. Sastry, Cation-π interactions of curved polycyclic systems: M+ (M= Li and Na) ion complexation with buckybowls, Tetrahedron Lett. 44 (2003) 6043-6046. https://doi.org/ 10.1016/S0040-4039(03)01512-0
[10] U.D. Priyakumar, M. Punnagai, G.P.K. Mohan, G.N. Sastry, A computational study of cation–π interactions in polycyclic systems: exploring the dependence on the curvature and electronic factors, Tetrahedron 60 (2004) 3037-3043. https://doi.org/ 10.1016/j.tet.2004.01.086
[11] A.S. Mahadevi, G.N. Sastry, Cation− π interaction: Its role and relevance in chemistry, biology, and material science, Chem. Rev. 113 (2013) 2100-2138. https://doi.org/10.1021/cr300222d
[12] M. Chourasia, G.M. Sastry, G.N. Sastry, Aromatic–aromatic interactions database, A2ID: an analysis of aromatic π-networks in proteins, Int. J. Biol. Macromol. 48 (2011) 540-552. https://doi.org/ 10.1016/j.ijbiomac.2011.01.008
[13] J. Ji, J. Wen, Y. Shen, Y. Lv, Y. Chen, S. Liu, H. Ma, Y. Zhang, Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing, J. Am. Chem. Soc. 139 (2017) 11698-11701. https://doi.org/ 10.1021/jacs.7b06708
[14] K. Wang, J. Pang, L. Li, S. Zhou, Y. Li, T. Zhang, Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation, Front. Chem. Sci. Eng. 12 (2018) 376-382. https://doi.org/ 10.1007/s11705-018-1705-z
[15] Y. Li, J. Yang, Q. Zhao, Y. Li, Dispersing carbon-based nanomaterials in aqueous phase by graphene oxides, Langmuir 29 (2013) 13527-13534. https://doi.org/ 10.1021/la4024025
[16] R. Salahandish, A. Ghaffarinejad, S.M. Naghib, A. Niyazi, K. Majidzadeh-A, M. Janmaleki, A. Sanati-Nezhad, Sandwich-structured nanoparticles-grafted functionalized graphene based 3D nanocomposites for high-performance biosensors to detect ascorbic acid biomolecule, Sci. Rep. 9 (2019) 1-11. https://doi.org/10.1038/s41598-018-37573-9
[17] B. Yuan, C. Xu, L. Liu, Q. Zhang, S. Ji, L. Pi, D. Zhang, Q. Huo, Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor, Electrochim. Acta 104 (2013) 78-83, https://doi.org/ 10.1016/j.electacta.2013.04.073
[18] S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor, Nano Lett. 12 (2012) 2294-2298. https://doi.org/ 10.1021/nl3001293
[19] K. Xu, C. Fu, Z. Gao, F. Wei, Y. Ying, C. Xu, G. Fu, Nanomaterial-based gas sensors: A review, Instrum. Sci. Technol. 46 (2018) 115-145. https://doi.org/ 10.1080/10739149.2017.1340896
[20] I.V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, H. Stamatis, Graphene-based nanobiocatalytic systems: recent advances and future prospects, Trends Biotechnol. 32 (2014) 312-320. https://doi.org/ 10.1016/j.tibtech.2014.04.004
[21] C.-M. Tilmaciu, M.C. Morris, Carbon nanotube biosensors, Front. Chem. 3 (2015) 59. https://doi.org/ 10.3389/fchem.2015.00059
[22] L.C. Qlark, Jr., Monitor and control of blood and tissue oxygen tensions, Trans. Am. Soc. Artif. Intern. Organs 2 (1956) 41-48. https://journals.lww.com/asaiojournal/Citation/1956/04000/Monitor_and_Control_of_Blood_and_Tissue_Oxygen.7.aspx
[23] L.C. Clerk. Jr., and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Anal. N.Y. Acad. Sci. 102 (1962) 29-45. https://doi.org/ 10.1111/j.1749-6623.1962.tb13623.x
[24] S.J. Updike, G.P. Hicks, The enzyme electrode, Nature 214 (1967) 986-988. https://doi.org/ 10.1038/214986a0
[25] G.G. Guibault, J.G. Montalvo, Urea-specific enzyme electrode, J. Am. Chem. Soc. 91 (1969) 2164-2165. https://doi.org/ 10.1021/ja01036a083
[26] A. Turner, I. Karube, G.S. Wilson, Biosensors: Fundamental and Applications, New York, NY:Oxford University Press, 1987.
[27] M.C. Morris, Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes, Cell Biochem. Biophys. 56 (2010) 19-37. https://doi.org/ 10.1007/s12013-009-9070-7
[28] A.P.F. Turner, Biosensors: sense and sensitibility, Chem. Soc. Rev. 42 (2013) 3184-3196. https://doi.org/ 10.1039/c3cs35528d
[29] W. Yuan, G. Shi, Graphene-based gas sensors, J. Mater. Chem. A 1 (2013) 10078-10091. https://doi.org/ 10.1039/C3TA11774J
[30] K.C. Kwon, K.S. Choi, B.J. Kim, J.-L. Lee, S.Y. Kim, Work-function decrease of graphene sheet using alkali metal carbonates, J. Phys. Chem. C 116 (2012) 26586-26591. https://doi.org/ 10.1021/jp3069927
[31] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103-13107. https://doi.org/ 10.1021/jp902214f
[32] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6 (2007) 652-655. https://doi.org/ 10.1038/nmat1967
[33] S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene-metal oxide nanohybrids for toxic gas sensor: a review, Sens. Actuators B-Chem. 221 (2015) 1170-1181. https://doi.org/ 10.1016/j.snb.2015.07.070
[34] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, Biosens. Bioelectron. 25 (2010) 1070-1074. https://doi.org/ 10.1016/j.bios.2009.09.024
[35] Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun. 11 (2009) 889-892. https://doi.org/ 10.1016/j.elecom.2009.02.013
[36] S. Alwarappan, A. Erdem, C. Liu, C.-Z. Li, Probing the electrochemical properties of graphene nanosheets for biosensing applications, J. Phys. Chem. C 113 (2009) 8853-8857. https://doi.org/ 10.1021/jp9010313
[37] J. Kailashiya, N. Singh, S.K. Singh, V. Agrawal, D. Dash, Graphene oxide-based biosensor for detection of platelet-derived microparticles: a potential tool for thrombus risk identification, Biosens. Bioelectron. 65 (2015) 274-280. https://doi.org/ 10.1016/j.bios.2014.10.056
[38] Z. Fan, Q. Lin, P. Gong, B. Liu, J. Wang, S. Yang, A new enzymatic immobilization carrier based on graphene capsule for hydrogen peroxide biosensors, Electrochim. Acta 151 (2015) 186-194. https://doi.org/ 10.1016/j.electacta.2014.11.022
[39] P.K. Basu, D. Indukuri, S. Keshavan, V. Navratna, S.R.K. Vanjari, S. Raghavan, N. Bhat, Graphene based E. coli sensor on flexible acetate sheet, Sens. Actuators B-Chem. 190 (2014) 342-347. https://doi.org/ 10.1016/j.snb.2013.08.080
[40] J.M. George, A. Antony, B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review, Microchim. Acta 185 (2018) 358. https://doi.org/ 10.1007/s00604-018-2894-3
[41] I. Tiwari, M. Singh, C.M. Pandey, G. Sumana, Electrochemical genosensor based on graphene oxide modified iron oxide–chitosan hybrid nanocomposite for pathogen detection, Sens. Actuators B-Chem. 206 (2015) 276-283. https://doi.org/ 10.1016/j.snb.2014.09.056
[42] H. Huang, W. Bai, C. Dong, R. Guo, Z. Liu, An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection, Biosens. Bioelectron. 68 (2015) 442-446. https://doi.org/ 10.1016/j.bios.2015.01.039
[43] X. Wang, X. Chen, Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Elsevier 2018.
[44] R.D. Pichugov, I.A. Malyshkina, E.E. Makhaeva, Electrochromic behavior and electrical percolation threshold of carbon nanotube/poly (pyridinium triflate) composites, J. Electroanal. Chem. 823 (2018) 601-609. https://doi.org/ 10.1016/j.elechem.2018.07.012
[45] V. Vukojević, S. Djurdjić, M. Ognjanović, M. Fabian, A. Samphao, K. Kalcher, D.M. Stanković, Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons, J. Electroanal. Chem. 823 (2018) 610-616. https://doi.org/ 10.1016/j.jelechem.2018.07.013
[46] S. Kumar, W. Ahlawat, R. Kumar, N. Dilbaghi, Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare, Biosens. Bioelectron. 70 (2015) 498-503. https://doi.org/ 10.1016/j.bios.2015.03.062
[47] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. https://doi.org/ 10.1038/354056a0
[48] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60 (1992) 2204-2206. https://doi.org/ 10.1063/1.107080@apl.2019.APLCLASS2019.issue-1
[49] J.Y. Oh, G.H. Jun, S. Jin, H.J. Ryu, S.H. Hong, Enhanced electrical networks of stretchable conductors with small fraction of carbon nanotube/graphene hybrid fillers, ACS Appl. Mater. Interfaces 8 (2016) 3319-3325. https://doi.org/ 10.1021/acsami.5b11205
[50] J.-C. Charlier, Defects in carbon nanotubes, Acc. Chem. Res. 35 (2002) 1063-1069. https://doi.org/ 10.1021/ar010166k
[51] D. Umadevi, G.N. Sastry, Feasibility of carbon nanomaterials as gas sensors: a computational study, 106 (2014) 1224-1234. http://repository.ias.ac.in/108631/1/1224.pdf
[52] T.J, Sisto, L.N. Zakharov, B.M. White, R. Jasti, Towards pi-extended cycloparaphenylenes as seeds for CNT growth: investigating strain relieving ring-openings and rearrangements, Chem. Sci. 7 (2016) 3681-3688. https://doi.org/ 10.1039/C5SC04218F
[53] A.V. Talyzin, I.V. Anoshkin, A.V. Krasheninnikov, R.M. Nieminen, A.G. Nasibulin, H. Jiang, E.I. Kauppinen, Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes, Nano Lett. 11 (2011) 4352-4356. https://doi.org/ 10.1021/nl2024678
[54] M.H. Dehghani, S. Kamalian, M. Shayeghi, M. Yousefi, Z. Heidarinejad, S. Agarwal, V.K. Gupta, High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes, Microchem. J. 145 (2019) 486-491. https://doi.org/ 10.1016/j.microc.2018.10.053
[55] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000) 622-625. https://doi.org/ 10.1126/science.287.5453.622
[56] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection, Nano Lett. 3 (2003) 929-933. https://doi.org/ 10.1021/nl034220x
[57] T. Lindgren, D. Norbäck, K. Andersson, B.-G. Dammström, Cabin environment and perception of cabin air quality among commercial aircrew, Aviat. Space Environ. Med. 71 (2000) 774-782. https://europepmc.org/article/med/10954353
[58] M. Bienfait, B. Asmussen, M. Johnson, P. Zeppenfeld, Methane mobility in carbon nanotubes, Surf. Sci. 460 (2000) 243-248. https://doi.org/ 10.1016/S0039-6028(00)00563-X
[59] S.L. Wells, J. DeSimone, CO2 technology platform: an important tool for environmental problem solving, Angew. Chem. Int. Ed. 40 (2001) 518-527. https://doi.org/ 10.1002/1521-3773(20010202)40:3<518::AID-ANIE518>3.0.CO;2-4
[60] E. Ivers-Tiffée, K.H. Härdtl, W. Menesklou, J. Riegel, Principles of solid state oxygen sensors for lean combustion gas control, Electrochim. Acta 47 (2001) 807-814. https://doi.org/ 10.1016/S0013-4686(01)00761-7
[61] N.F. Sheppard Jr, R.C. Tucker, S. Salehi-Had, Design of a conductimetric pH microsensor based on reversibly swelling hydrogels, Sens. Actuators B-Chem. 10 (1993) 73-77. https://doi.org/ 10.1016/0925-4005(93)80028-A
[62] P. Dalgaard, O. Mejlholm, H.H. Huss, Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish, Int. J. Food Microbiol. 38 (1997) 169-179. https://doi.org/ 10.1016/S0168-1605(97)00101-3
[63] S. Matsubara, S. Kaneko, S. Morimoto, S. Shimizu, T. Ishihara, Y. Takita, A practical capacitive type CO2 sensor using CeO2/BaCO3/CuO ceramics, Sens. Actuators B-Chem. 65 (2000) 128-132. https://doi.org/ 10.1016/S0925-4005(99)00407-4
[64] J.F. Currie, A. Essalik, J-C Marusic, Micromachined thin film solid state electrochemical CO2, NO2 and SO2 gas sensors, Sens. Actuators B-Chem. 59 (1999) 235-241. https://doi.org/ 10.1016/S0925-4005(99)00227-0
[65] H.-E. Endres, R. Hartinger, M. Schwaiger, G. Gmelch, M. Roth, A capacitive CO2 sensor system with suppression of the humidity interference, Sens. Actuators B-Chem. 57 (1999) 83-87. https://doi.org/ 10.1016/S0925-4005(99)00060-X
[66] M.-S. Lee, J.-U. Meyer, A new process for fabricating CO2-sensing layers based on BaTiO3 and additives, Sens. Actuators B-Chem. 68 (2000) 293-299. https://doi.org/ 10.1016/S0925-4005(00)00447-0
[67] J. Wang, Carbon‐nanotube based electrochemical biosensors: A review, Electroanalysis (N.Y.N.Y.) 17 (2005) 7-14. https://doi.org/ 10.1002/elan.200403113
[68] J. Wang, M. Musameh, Carbon nanotube/teflon composite electrochemical sensors and biosensors, Anal. Chem. 75 (2003) 2075-2079. https://doi.org/ 10.1021/ac030007+
[69] M. D. Rubianes, G.A. Rivas, Carbon nanotubes paste electrode, Electrochem. Commun. 5 (2003) 689-694. https://doi.org/ 10.1016/S1388-2481(03)00168-1
[70] M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 4 (2002) 743-746. https://doi.org/ 10.1016/S1388-2481(02)00451-4
[71] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc. 125 (2003) 2408-2409. https://doi.org/ 10.1021/ja028951v
[72] J.H.T. Luong, S. Hrapovic, D. Wang, F. Bensebaa, B. Simard, Solubilization of multiwall carbon nanotubes by 3‐aminopropyltriethoxysilane towards the fabrication of electrochemical biosensors with promoted electron transfer, Electroanalysis (N.Y.N.Y.) 16 (2004) 132-139. https://doi.org/ 10.1002/elan.200302931
[73] S. Gupta, C.R. Prabha, C.N. Murthy, Functionalized multi-walled carbon nanotubes/polyvinyl alcohol membrane coated glassy carbon electrode for efficient enzyme immobilization and glucose sensing, J. Environ. Chem. Eng. 4 (2016) 3734-3740. https://doi.org/ 10.1016/j.jece.2016.08.021
[74] C.-S. Woo, C.-H. Lim, C.-W. Cho, B. Park, H. Ju, D.-H. Min, C.-J. Lee, S.-B. Lee, Fabrication of flexible and transparent single-wall carbon nanotube gas sensors by vacuum filtration and poly (dimethyl siloxane) mold transfer, Microelectron. Eng. 84 (2007) 1610-1613. https://doi.org/ 10.1016/j.mee.2007.01.162
[75] Y. Wang, J.T.W. Yeow, A review of carbon nanotubes-based gas sensors, J. Sens. 2009 (2009). https://doi.org/ 10.1155/2009/493904
[76] W.A. de Heer, A. Chatelain, D. Ugarte, A carbon nanotube field-emission electron source, Science 270 (1995) 1179-1180. https://doi.org/10.1126/science.270.5239.1179
[77] S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393 (1998) 49-52. https://doi.org/ 10.1038/29954
[78] R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotube actuators, Science 284 (1999) 1340-1344. https://doi.org/ 10.1126/science.284.5418.1340
[79] T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289 (2000) 94-97. https://doi.org/ 10.1126/science.289.5476.94
[80] A.M. Pisoschi, Biosensors as bio-based materials in chemical analysis: a review, J. Biobased Mater. Bioenergy 7 (2013) 19-38. https://doi.org/ 10.1166/jbmb.2013.1274
[81] S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, F.-S. Sheu, Advances in carbon nanotube based electrochemical sensors for bioanalytical applications, Biotechnol. Adv. 29 (2011) 169-188. https://doi.org/ 10.1016/j.biotechadv.2010.10.002
[82] J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, A. Simonian, Biosensor technology: recent advances in threat agent detection and medicine, Chem. Soc. Rev. 42 (2013) 8733-8768. https://doi.org/ 10.1039/C3CS60141B
[83] F. Xiaomiao, L. Ruimei, Y. Xiaoyan, H. Wenhua, Application of novel carbon nanomaterials to electrochemistry [J], Prog. Chem. 11 (2012). http://en.cnki.com.cn/Article_en/CJFDTotal-HXJZ201211010.htm
[84] D.J. Caruana, S. Howorka, Biosensors and biofuel cells with engineered proteins, Mol. Biosyst. 6 (2010) 1548-1556. https://doi.org/ 10.1039/C004951D
[85] S. Zhu, G. Xu, Single-walled carbon nanohorns and their applications, Nanoscale 2 (2010) 2538-2549. https://doi.org/ 10.1039/C0NR00387E
[86] W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes, Biotechnol. Adv. 29 (2011) 889-895. https://doi.org/ 10.1016/j.biotechadv.2011.07.007
[87] T. Nӧll, G. Nӧll, Strategies for “wiring” redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology, Chem. Soc. Rev. 40 (2011) 3564-3576. https://doi.org/ 10.1039/C1CS15030H
[88] Q. Lang, L. Yin, J. Shi, L. Li, L. Xia, A. Liu, Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell, Biosens. Bioelectron. 51 (2014) 158-163. https://doi.org/ 10.1016/j.bios.2013.07.021
[89] X.-Y. Yang, G. Tian, N. Jiang, B.-L. Su, Immobilization technology: a sustainable solution for biofuel cell design, Energy Environ. Sci. 5 (2012) 5540-5563. https://doi.org/ 10.1039/C1EE02391H
[90] Y. Tan, W. Deng, B. Ge, Q. Xie, J. Huang, S. Yao, Biofuel cell and phenolic biosensor based on acid-resistant laccase–glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film, Biosens. Bioelectron. 24 (2009) 2225-2231. https://doi.org/ 10.1016/j.bios.2008.11.026
[91] S.H. Shuit, K.F. Yee, K.T. Lee, B. Subhash, S.H. Tan, Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview, RSC Adv. 3 (2013) 9070-9094. https://doi.org/ 10.1039/C3RA22945A
[92] Y. Ye, C. Jo, I. Jeong, J. Lee, Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries, Nanoscale 5 (2013) 4584-4605. https://doi.org/ 10.1039/C3NR00176H
[93] S. Zhang, Y. Shao, G. Yin, Y. Lin, Recent progress in nanostructured electrocatalysts for PEM fuel cells, J. Mater. Chem. A 1 (2013) 4631-4641. https://doi.org/ 10.1039/C3TA01161E
[94] Q. Li, R. Cao, J. Cho, G. Wu, Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries, Phys. Chem. Chem. Phys. 16 (2014) 13568-13582. https://doi.org/ 10.1039/C4CP00225C
[95] D. Olney, L. Fuller, K.S.V. Santhanam, A greenhouse gas silicon microchip sensor using a conducting composite with single walled carbon nanotubes, Sens. Actuators B-Chem. 191 (2014) 545-552. https://doi.org/ 10.1016/j.snb.2013.10.039
[96] S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor, Sens. Actuators A Phys. 201 (2013) 321-327. https://doi.org/ 10.1016/j.sna.2013.07.018
[97] S. Badhulika, N.V. Myung, A. Mulchandani, Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds, Talanta 123 (2014) 109-114. https://doi.org/ 10.1016/j.talanta.2014.02.005
[98] W. Yuan, L. Huang, Q. Zhou, G. Shi, Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers, ACS Appl. Mater. Interfaces 6 (2014) 17003-17008. https://doi.org/ 10.1021/am504616c
[99] M. Mittal, A. Kumar, Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning, Sens. Actuators B-Chem. 203 (2014) 349-362. https://doi.org/ 10.1016/j.snb.2014.05.080
[100] E. Akbari, Z. Buntat, A. Enzevaee, M. Ebrahimi, A.H. Yazdavar, R. Yusof, Analytical modeling and simulation of I–V characteristics in carbon nanotube based gas sensors using ANN and SVR methods, Chemom. Intell. Lab. Syst. 137 (2014) 173-180. https://doi.org/ 10.1016/j.chemolab.2014.07.001
[101] P. Jha, M. Sharma, A. Chouksey, P. Chaturvedi, D. Kumar, G. Upadhyaya, J. S.B.S. Rawat, P. K. Chaudhury, Functionalization of carbon nanotubes with metal phthalocyanine for selective gas sensing application, Synth. React. Inorg. Met-org. Nano-met. Chem. 44 (2014) 1551-1557. https://doi.org/ 10.1080/15533174.2013.818021
[102] L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing, Sens. Actuators B-Chem. 170 (2012) 163-171. https://doi.org/ 10.1016/j.snb.2011.05.031
[103] F. Xu, S. Guo, Y.-L. Luo, Novel THTBN/MWNTs-OH polyurethane conducting composite thin films for applications in detection of volatile organic compounds, Mater. Chem. Phys. 145 (2014) 222-231. https://doi.org/ 10.1016/j.matchemphys.2014.02.006
[104] D. Jung, M. Han, G.S. Lee, Gas-sensing properties of multi-walled carbon-nanotube sheet coated with NiO, Carbon 78 (2014) 156-163. https://doi.org/ 10.1016/j.carbon.2014.06.063
[105] M. Boujtita, Chemical and biological sensing with carbon nanotubes (CNTs), Nanosens. Chem. Biol. App. (2014) 3-27. https://doi.org/ 10.1533/9780857096722.1.3
[106] M. Ates, A.S. Sarac, Conducting polymer coated carbon surfaces and biosensor applications, Prog. Org. Coat. 66 (2009) 337-358. https://doi.org/ 10.1016/j.porgcoat.2009.08.014
[107] H.J. Salavagione, A.M. Díez-Pascual, E. Lázaro, S. Vera, M.A. Gómez-Fatou, Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer, J. Mater. Chem. A 2 (2014) 14289-14328. https://doi.org/ 10.1039/C4TA02159B
[108] S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale 5 (2013) 1727-1752. https://doi.org/ 10.1039/C3NR33560G
[109] M.A. Arugula, A. Simonian, Novel trends in affinity biosensors: current challenges and perspectives, Meas. Sci. Technol. 25 (2014) 032001. https://doi.org/ 10.1088/0957-0233/25/3/032001
[110] S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, M.S. Strano, Carbon nanotubes as optical biomedical sensors, Adv. Drug Deliv. Rev. 65 (2013) 1933-1950. https://doi.org/ 10.1016/j.addr.2013.07.015
[111] V. Mani, S.-M. Chen, B.-S. Lou, Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids, Int. J. Electrochem. Sci. 8 (2013) 11641-11660. http://electrochemsci.org/papers/vol8/81011641.pdf
[112] K. Ryu, H. Xue, J. Park, Benign enzymatic synthesis of multiwalled carbon nanotube composites uniformly coated with polypyrrole for supercapacitors, J. Chem. Technol. Biotechnol. 88 (2013) 788-793. https://doi.org/ 10.1002/jctb.3899
[113] X. Zhao, B.M. Sánchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale 3 (2011) 839-855. https://doi.org/ 10.1039/C0NR00594K
[114] J. Yang, L. Lian, P. Xiong, M. Wei, Pseudo-capacitive performance of titanate nanotubes as a supercapacitor electrode, Chem. Commun. 50 (2014) 5973-5975. https://doi.org/ 10.1039/C3CC49494B
[115] M. Sawangphruk, M. Suksomboon, K. Kongsupornsak, J. Khuntilo, P. Srimuk, Y. Sanguansak, P. Klunbud, P. Suktha, P. Chiochan, High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper, J. Mater. Chem. A 1 (2013) 9630-9636. https://doi.org/ 10.1039/C3TA12194A
[116] S. Cataldo, P. Salice, E. Menna, B. Pignataro, Carbon nanotubes and organic solar cells, Energy Environ. Sci. 5 (2012) 5919-5940. https://doi.org/ 10.1039/C1EE02276H
[117] W. Yang, L. Gan, H. Li, T. Zhai, Two-dimensional layered nanomaterials for gas-sensing applications, Inorg. Chem. Front. 3 (2016) 433-451. https://doi.org/ 10.1039/C5QI00251F
[118] Z. Zhang, R. Zou, G. Song, L. Yu, Z. Chen, J. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors, J. Mater. Chem. 21 (2011) 17360-17365. https://doi.org/ 10.1039/C1JM12987B
[119] J. Yi, J.M. Lee, W.I. Park, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors, Sens. Actuators B-Chem. 155 (2011) 264-269. https://doi.org/ 10.1016/j.snb.2010.12.033
[120] T.H. Han, Y.-K. Huang, A.T.L. Tan, V.P. Dravid, J. Huang, Steam etched porous graphene oxide network for chemical sensing, J. Am. Chem. Soc. 133 (2011) 15264-15267. https://doi.org/ 10.1021/ja205693t
[121] L. Zhang, C. Li, A. Liu, G. Shi, Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors, J. Mater. Chem. 22 (2012) 8438-8443. https://doi.org/ 10.1039/C2JM16552J
[122] R. Arsat, M. Breedon, M. Sha, ei, PG Spizziri, S. Gilje, RB Kaner, K. Kalantar-zadeh and W. Wlodarski, Chem. Phys. Lett. 467 (2009) 344-347
[123] N. Hu, Y. Wang, J. Chai, R. Gao, Z. Yang, E.S.-W. Kong, Y. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide, Sens. Actuators B-Chem. 163 (2012) 107-114. https://doi.org/ 10.1016/j.snb.2012.01.016
[124] H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S. Yang, M.M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet, Sens. Actuators B-Chem. 157 (2011) 310-313. https://doi.org/ 10.1016/j.snb.2011.03.035
[125] M.W.K. Nomani, R. Shishir, M. Qazi, D. Diwan, V. B. Shields, M. G. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC, Sens. Actuators B-Chem. 150 (2010) 301-307. https://doi.org/ 10.1016/j.snb.2010.06.069
[126] R. Arsat, M. Breedon, M. Shafiei, P.G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, W. Wlodarski, Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chem. Phys. Lett. 467 (2009) 344-347. https://doi.org/ 10.1016/j.cplett.2008.11.039
[127] L.-M. Lu, L. Zhang, F.-L. Qu, H.-X. Lu, X.-B. Zhang, Z.-S. Wu, S.-Y. Huan, Q.-A. Wang, G.-L. Shen, R.-Q. Yu, A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy, Biosens. Bioelectron. 25 (2009) 218-223. https://doi.org/ 10.1016/j.bios.2009.06.041
[128] H.-F. Cui, J.-S. Ye, W.-D. Zhang, C.-M. Li, J.H.T. Luong, F.-S. Sheu, Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites, Anal. Chim. Acta 594 (2007) 175-183. https://doi.org/ 10.1016/j.aca.2007.05.047
[129] X. Luo, A.J. Killard, M.R. Smyth, Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes, Electroanalysis (N.Y.N.Y.) 18 (2006) 1131-1134. https://doi.org/ 10.1002/elan.200603513
[130] L. García-Gancedo, Z. Zhu, E. Iborra, M. Clement, J. Olivares, A.J. Flewitt, W.I. Milne, G.M. Ashley, J.K. Luo, X. B. Zhao, J.R. Lu, AlN-based BAW resonators with CNT electrodes for gravimetric biosensing, Sens. Actuators B-Chem. 160 (2011) 1386-1393. https://doi.org/ 10.1016/j.snb.2011.09.083
[131] Y. Li, Y.-Y. Song, C. Yang, X.-H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose, Electrochem. Commun. 9 (2007) 981-988. https://doi.org/ 10.1016/j.elecom.2006.11.035
[132] Y.-C. Tsai, S.-C. Li, S.-W. Liao, Electrodeposition of polypyrrole–multiwalled carbon nanotube–glucose oxidase nanobiocomposite film for the detection of glucose, Biosens. Bioelectron. 22 (2006) 495-500. https://doi.org/10.1016/j.bios.2006.06.009
[133] Y.-L. Yao, K.-K. Shiu, Direct electrochemistry of glucose oxidase at carbon nanotube-gold colloid modified electrode with poly (diallyldimethylammonium chloride) coating, Electroanalysis (N.Y.N.Y.) 20 (2008) 1542-1548. https://doi.org/ 10.1002/elan.200804209
[134] S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum, Anal. Chem. 75 (2003) 3046-3049. https://doi.org/ 10.1021/ac0263465
[135] J. Wang, D.F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks, Anal. Chem. 80 (2008) 997-1004. https://doi.org/ 10.1021/ac701790z
[136] J. Chen, W.-D. Zhang, J.-S. Ye, Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite, Electrochem. Commun. 10 (2008) 1268-1271. https://doi.org/ 10.1016/j.elecom.2008.06.022
[137] X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode, Anal. Biochem. 363 (2007) 143-150. https://doi.org/ 10.1016/j.ab.2007.01.003
[138] M. Zhou, L. Shang, B. Li, L. Huang, S. Dong, Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase-and oxidase-based biosensors, Biosens. Bioelectron. 24 (2008) 442-447. https://doi.org/ 10.1016/j.bios.2008.04.025