State-of-the-Art and Prospective of Aerogels


State-of-the-Art and Prospective of Aerogels

Kaushalya Bhakara, Parul Khuranab, Sheenam Thataic, Dinesh Kumara

The term aerogel is used for the cluster of materials, which exhibits definite geometry and certain properties with no set chemical formula. The astonishing physical properties such as non-toxic, high porosity with a large surface area, comparatively lightweight with other solids, inflammable insulation material. The sol-gel process implies the synthesis of aerogel. The composition of aerogel is controlled by some factors such as starting material, catalyst, and conditions of the preparation method. The physical and chemical properties of aerogel make it an interesting material for textiles, aerospace engineering, construction material and especially for energy-efficient retrofitting opportunities of residential buildings. In this chapter preparation methods of aerogel, state-of-the-art properties, and preparation of aerogel and future perspective of aerogels are discussed.

Aerogel, Nanoporous, Sol-Gel Process, Thermal Insulation, Surface Modification

Published online 9/20/2020, 22 pages

Citation: Kaushalya Bhakara, Parul Khuranab, Sheenam Thataic, Dinesh Kumara, State-of-the-Art and Prospective of Aerogels, Materials Research Foundations, Vol. 84, pp 250-271, 2020


Part of the book on Aerogels I

[1] I. Smirnova, P. Gurikov, Aerogel production: Current status, research directions, and future opportunities, J. Supercrit. Fluids. 134 (2018) 228–233.
[2] N. Hüsing, U. Schubert, Aerogels—Airy Materials: Chemistry, Structure, and Properties, Angew. Chemie Int. Ed. 37 (1998) 22–45.<22::aid-anie22>;2-9
[3] S. Gopi, P. Balakrishnan, V.G. Geethamma, A. Pius, S. Thomas, Applications of cellulose nanofibrils in drug delivery, Elsevier Inc., 2018.
[4] R.B. Malla, A. Maji, Engineering, construction, and operations in challenging environments Earth & space 2004: proceedings of the ninth bennal ASCE Aerospace Division international conference on engeneering, construction, and operations in challenging environments, March 7-10, 2004, League City, Houston, Texas, ASCE, 2004.
[5] J. Fricke, A. Emmerling, Aerogels – Recent Progress in Production Techniques and Novel Applications, J. Sol-Gel Sci. Technol. 13 (1998) 299–303. DOI:10.1023/A:1008663908431
[6] M. Schmidt, F. Schwertfeger, Applications for silica aerogel products, J. Non. Cryst. Solids. 225 (1998) 364–368.
[7] G. Herrmann, R. Iden, M. Mielke, F. Teich, B. Ziegler, On the way to commercial production of silica aerogel, J. Non. Cryst. Solids. 186 (1995) 380–387.
[8] R.G. Jones, Compendium of polymer terminology and nomenclature: IUPAC recommendations, 2008, RSC Pub., Cambridge, 2009.
[9] G.S. S, L.B. C, M. Engineering, S.N.D. Coe, A Review on Aerogel An Introduction, 0072 (2018) 4098–4101.
[10] S.S. Kistler, Coherent expanded aerogels and jellies [5], Nature. 127 (1931) 741.
[11] N. Bheekhun, A. Rahim, A. Talib, M.R. Hassan, JAIME AROCHAl Universidad Nacional de Colombia, 2013 (2013).
[12] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci. 24 (1989) 3221–3227.
[13] S. Montes, H. Maleki, Aerogels and their applications, Elsevier Inc., 2020.
[14] C. Tan, B.M. Fung, J.K. Newman, C. Vu, Organic Aerogels with Very High Impact Strength, Advanced Materials. 13 (2001) 644–646. doi:10.1002/1521-4095(200105)13:9<644::aid-adma644>;2-#
[15] E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Toward aerogel based thermal superinsulation in buildings: A comprehensive review, Renew. Sustain. Energy Rev. 34 (2014) 273–299.
[16] T. Linhares, M.T. Pessoa De Amorim, L. Durães, Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications, J. Mater. Chem. A. 7 (2019) 22768–22802.
[17] U. Schubert, Part One Sol – Gel Chemistry and Methods, Sol-Gel Handb. Synth. Charact. Appl. (2015) 1–28.
[18] A. Du, B. Zhou, Z. Zhang, J. Shen, A special material or a new state of matter: A review and reconsideration of the aerogel, Materials (Basel). 6 (2013) 941–968.
[19] S. Araby, A. Qiu, R. Wang, Z. Zhao, C.H. Wang, J. Ma, Aerogels based on carbon nanomaterials, J. Mater. Sci. 51 (2016) 9157–9189.
[20] L.Wang, J. Feng, Y. Jiang, L. Li, J. Feng, Thermal conductivity of polyvinylpolymethylsiloxane aerogels with high specific surface area, RSC Adv. 9 (2019) 7833–7841.
[21] G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno, H. Kaji, J. Shen, K. Nakanishi, Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying, ACS Nano. 12 (2018) 521–532.
[22] G. Zu, K. Kanamori, T. Shimizu, Y. Zhu, A. Maeno, H. Kaji, K. Nakanishi, J. Shen, Versatile Double-Cross-Linking Approach to Transparent, Machinable, Supercompressible, Highly Bendable Aerogel Thermal Superinsulators, Chem. Mater. 30 (2018) 2759–2770.
[23] G. Zu, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, Superflexible Multifunctional Polyvinylpolydimethylsiloxane-Based Aerogels as Efficient Absorbents, Thermal Superinsulators, and Strain Sensors, Angew. Chemie – Int. Ed. 57 (2018) 9722–9727.
[24] M.A.B. Meador, E.J. Malow, R. Silva, S. Wright, D. Quade, S.L. Vivod, H. Guo, J. Guo, M. Cakmak, Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine, ACS Appl. Mater. Interfaces. 4 (2012) 536–544.
[25] L. Li, B. Yalcin, B.N. Nguyen, M.A.B. Meador, M. Cakmak, Flexible nanofiber-reinforced aerogel (Xerogel) synthesis, manufacture, and characterization, ACS Appl. Mater. Interfaces. 1 (2009) 2491–2501.
[26] J.P. Randall, M.A.B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications, ACS Appl. Mater. Interfaces. 3 (2011) 613–626.
[27] K.E. Parmenter, F. Milstein, Mechanical properties of silica aerogels, J. Non. Cryst. Solids. 223 (1998) 179–189.
[28] S. Motahari, A. Abolghasemi, Silica aerogel-glass fiber composites as fire shield for steel frame structures, J. Mater. Civ. Eng. 27 (2015) 1–7.
[29] Z. Deng, J. Wang, A. Wu, J. Shen, B. Zhou, High strength SiO2 aerogel insulation, J. Non. Cryst. Solids. 225 (1998) 101–104.
[30] Y. Zhang, Y. Shen, D. Han, Z. Wang, J. Song, L. Niu, Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization, J. Mater. Chem. 16 (2006) 4592–4597.
[31] M. Schwan, R. Tannert, L. Ratke, New soft and spongy resorcinol-formaldehyde aerogels, J. Supercrit. Fluids. 107 (2016) 201–208.
[32] A. Léonard, S. Blacher, M. Crine, W. Jomaa, Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying, J. Non. Cryst. Solids. 354 (2008) 831–838.
[33] L.A. Capadona, M.A.B. Meador, A. Alunni, E.F. Fabrizio, P. Vassilaras, N. Leventis, Flexible, low-density polymer crosslinked silica aerogels, Polymer (Guildf). 47 (2006) 5754–5761.
[34] B.N. Nguyen, M.A.B. Meador, A. Medoro, V. Arendt, J. Randall, L. McCorkle, B. Shonkwiler, Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate, ACS Appl. Mater. Interfaces. 2 (2010) 1430–1443.
[35] M. Aghabararpour, M. Mohsenpour, S. Motahari, A. Abolghasemi, Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels, J. Non. Cryst. Solids. 481 (2018) 548–555.
[36] A. Katti, N. Shimpi, S. Roy, H. Lu, E.F. Fabrizio, A. Dass, L.A. Capadona, N. Leventis, Chemical, physical, and mechanical characterization of isocyanate cross-Linked amine-modified silica aerogels, Chem. Mater. 18 (2006) 285–296.
[37] N. Leventis, C. Sotiriou-Leventis, G. Zhang, A.M.M. Rawashdeh, Nanoengineering Strong Silica Aerogels, Nano Lett. 2 (2002) 957–960.
[38] G. Zhang, A. Dass, A.M.M. Rawashdeh, J. Thomas, J.A. Counsil, C. Sotiriou-Leventis, E.F. Fabrizio, F. Ilhan, P. Vassilaras, D.A. Scheiman, L. McCorkle, A. Palczer, J.C. Johnston, M.A. Meador, N. Leventis, Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization, J. Non. Cryst. Solids. 350 (2004) 152–164.
[39] B.N. Nguyen, M.A.B. Meador, M.E. Tousley, B. Shonkwiler, L. McCorkle, D.A. Scheiman, A. Palczer, Tailoring elastic properties of silica aerogels cross-linked with polystyrene, ACS Appl. Mater. Interfaces. 1 (2009) 621–630.
[40] M.A.B. Meador, E.F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J.C. Johnston, N. Leventis, Cross-linking amine-modified silica aerogels with epoxies: Mechanically strong lightweight porous materials, Chem. Mater. 17 (2005) 1085–1098.
[41] S. Shafi, R. Navik, X. Ding, Y. Zhao, Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel, J. Non. Cryst. Solids. 503–504 (2019) 78–83.
[42] C.Q. Hong, J.C. Han, X.H. Zhang, J.C. Du, Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties, Scr. Mater. 68 (2013) 599–602.
[43] D. Shi, Y. Sun, J. Feng, X. Yang, S. Han, C. Mi, Y. Jiang, H. Qi, Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel, Mater. Sci. Eng. A. 585 (2013) 25–31.
[44] M. Aghabararpour, M. Mohsenpour, S. Motahari, A. Ghahreman, Mechanical and thermal insulation properties of isocyanate crosslinked resorcinol formaldehyde aerogel: Effect of isocyanate structure, J. Appl. Polym. Sci. 136 (2019).
[45] Y. Pan, S. He, L. Gong, X. Cheng, C. Li, Z. Li, Z. Liu, H. Zhang, Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying, Mater. Des. 113 (2017) 246–253.
[46] T. Zhou, X. Cheng, Y. Pan, C. Li, L. Gong, Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying, Cellulose. 26 (2019) 1747–1755.
[47] A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev. 102 (2002) 4243–4265.
[48] T. Hu, L. Li, J. Zhang, Green Synthesis of Ant Nest-Inspired Superelastic Silicone Aerogels, ACS Sustain. Chem. Eng. 6 (2018) 11222–11227.
[49] Š. Kadochová, J. Frouz, Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants (Formica rufa group), F1000Research. 2 (2014) 1–16.
[50] K.W. Allen, Silane coupling agents, second edition, 1992.
[51] J. Kwon, J. Kim, T. Yoo, D. Park, H. Han, Preparation and characterization of spherical polyimide aerogel microparticles, Macromol. Mater. Eng. 299 (2014) 1081–1088.
[52] Y. Chen, G. Shao, Y. Kong, X. Shen, S. Cui, Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO 2 capture, Chem. Eng. J. 322 (2017) 1–9.
[53] J. Feng, X. Wang, Y. Jiang, D. Du, J. Feng, Study on Thermal Conductivities of Aromatic Polyimide Aerogels, ACS Appl. Mater. Interfaces. 8 (2016) 12992–12996.
[54] J. Kim, J. Kwon, M. Kim, J. Do, D. Lee, H. Han, Low-dielectric-constant polyimide aerogel composite films with low water uptake, Polym. J. 48 (2016) 829–834.
[55] C. Chidambareswarapattar, Z. Larimore, C. Sotiriou-Leventis, J.T. Mang, N. Leventis, One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons, J. Mater. Chem. 20 (2010) 9666–9678.
[56] D. Lee, J. Kim, S. Kim, G. Kim, J. Roh, S. Lee, H. Han, Tunable pore size and porosity of spherical polyimide aerogel by introducing swelling method based on spherulitic formation mechanism, Microporous Mesoporous Mater. 288 (2019) 109546.
[57] G. Shi, Y. Qian, F. Tan, W. Cai, Y. Li, Y. Cao, Controllable synthesis of pomelo peel-based aerogel and its application in adsorption of oil/organic pollutants, R. Soc. Open Sci. 6 (2019).
[58] R. Lin, A. Li, T. Zheng, L. Lu, Y. Cao, Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent, RSC Adv. 5 (2015) 82027–82033.
[59] M.E. Argun, D. Güclü, M. Karatas, Adsorption of Reactive Blue 114 dye by using a new adsorbent: Pomelo peel, J. Ind. Eng. Chem. 20 (2014) 1079–1084.
[60] X. Ye, Z. Chen, S. Ai, J. Zhang, B. Hou, Q. Zhou, F. Wang, H. Liu, S. Cui, Mechanical and thermal properties of reticulated SiC aerogel composite prepared by template method, J. Compos. Mater. 53 (2019) 4117–4124.
[61] B. Wu, G. Zhu, A. Dufresne, N. Lin, Fluorescent Aerogels Based on Chemical Crosslinking between Nanocellulose and Carbon Dots for Optical Sensor, ACS Appl. Mater. Interfaces. 11 (2019) 16048–16058.
[62] K.J. De France, T. Hoare, E.D. Cranston, Review of Hydrogels and Aerogels Containing Nanocellulose, Chem. Mater. 29 (2017) 4609–4631.
[63] Z.L. Wu, Z.X. Liu, Y.H. Yuan, Carbon dots: Materials, synthesis, properties and approaches to long-wavelength and multicolor emission, J. Mater. Chem. B. 5 (2017) 3794–3809.
[64] W. Liu, C. Li, Y. Ren, X. Sun, W. Pan, Y. Li, J. Wang, W. Wang, Carbon dots: Surface engineering and applications, J. Mater. Chem. B. 4 (2016) 5772–5788.
[65] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (2015) 362–381.
[66] D. Lu, L. Su, H. Wang, M. Niu, L. Xu, M. Ma, H. Gao, Z. Cai, X. Fan, Scalable Fabrication of Resilient SiC Nanowires Aerogels with Exceptional High-Temperature Stability, ACS Appl. Mater. Interfaces. (2019) acsami.9b16811.
[67] L. Su, H. Wang, M. Niu, X. Fan, M. Ma, Z. Shi, S.W. Guo, Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel, ACS Nano. 12 (2018) 3103–3111.
[68] G. Li, M. Zhu, W. Gong, R. Du, A. Eychmüller, T. Li, W. Lv, X. Zhang, Boron Nitride Aerogels with Super-Flexibility Ranging from Liquid Nitrogen Temperature to 1000 °C, Adv. Funct. Mater. 29 (2019) 1–7.
[69] T. Woignier, A. HafidiAlaoui, J. Primera, J. Phalippou, Mechanical Properties of Aerogels : Brittle or Plastic Solids?, Key Eng. Mater. 391 (2008) 27–44.
[70] C.A. García-González, T. Budtova, L. Durães, C. Erkey, P. Del Gaudio, P. Gurikov, M. Koebel, F. Liebner, M. Neagu, I. Smirnova, An opinion paper on aerogels for biomedical and environmental applications, Molecules. 24 (2019) 1–15.
[71] K. Kamiuto, T. Miyamoto, S. Saitoh, Thermal characteristics of a solar tank with aerogel surface insulation, Appl. Energy. 62 (1999) 113–123.
[72] E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Toward aerogel based thermal superinsulation in buildings: A comprehensive review, Renew. Sustain. Energy Rev. 34 (2014) 273–299.
[73] D.T. Fakult, G. Doktor-ingenieur, S. Suttiruengwong, Silica Aerogels and Hyperbranched Polymers as Drug Delivery Systems, Synthese. (2005).
[74] R. Media, Supercritical Fluids as Solvents and Reaction Media G. Brunner (editor) © 2004 Elsevier B.V. All rights reserved 39, Supercrit. Fluids as Solvents React. Media. (2004) 39–60.
[75] M.H.A. Alnaief, Process development for production of aerogels with controlled morphology as potential drug carrier systems, ProQuest Diss. Theses. (2011).
[76] Z. Ülker, D. Sanli, C. Erkey, Applications of Aerogels and Their Composites in Energy-Related Technologies, Supercrit. Fluid Technol. Energy Environ. Appl. (2014) 157–180.
[77] L. Zang, Energy Efficiency and Renewable Energy Through Nanotechnology, 2011.
[78] J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai, Z. Lin, Graphene aerogels for efficient energy storage and conversion, Energy Environ. Sci. 11 (2018) 772–799.