Graphene-based Materials and their Nanocomposites with Metal Oxides: Biosynthesis, Electrochemical, Photocatalytic and Antimicrobial Applications


Graphene-based Materials and their Nanocomposites with Metal Oxides: Biosynthesis, Electrochemical, Photocatalytic and Antimicrobial Applications

Ratiram Gomaji Chaudhary, Ajay K. Potbhare, Prashant B. Chouke, Alok R. Rai, Raghvendra Kumar Mishra, Martin F. Desimone and Ahmed A. Abdala

Metal oxides and their nanocomposites are used in various technological applications. Biofabrication of carbon-based metal oxide nanocomposites preparation using plants, microbes, cell cultures and enzymes are the most attractive technique because of non-toxic nature, and sustainable process. Phytochemicals play important role in size lessening of the particles by performing as structure-directing, capping and reducing agents. In this chapter, we shed light on eco-friendly, money-spinning, and phytosynthesis of carbon based nanomaterials (CNMs) like graphene oxide, reduced graphene oxide, and metal doped-rGO nanocomposites using green reducers. Moreover, electrochemical, photocatalytical and biological applications of CNMs and their nanocomposites with metal oxides are discussed.

Carbon Nanomaterials, Biosynthesis, Electrochemical Performances, Photocatalytical Activity, Biological Assay

Published online 8/25/2020, 38 pages

Citation: Ratiram Gomaji Chaudhary, Ajay K. Potbhare, Prashant B. Chouke, Alok R. Rai, Raghvendra Kumar Mishra, Martin F. Desimone and Ahmed A. Abdala, Graphene-based Materials and their Nanocomposites with Metal Oxides: Biosynthesis, Electrochemical, Photocatalytic and Antimicrobial Applications, Materials Research Foundations, Vol. 83, pp 79-116, 2020


Part of the book on Magnetic Oxides and Composites II

[1] H. Chang, L.Tang, Y. Wang, J. Jiang, J. Li, Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection, Analytical Chemistry, 82 (2010) 2341-2346.
[2] Y. Sun, B.Zhou, Y. Lin, W. Wang, K. Fernando, P.Pathak, M. Meziani, B. Harruff, X. Wang, H. Wang, P. Luo, H. Yang, M. Kose, B.Chen, L.Veca, S. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence, Journal of the American Chemical Society, 21 (2006) 756-7757.
[3] N. Wang, M. Lin, H. Dai, H. Ma, Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thyminemercury-thymine structure,Biosensors and Bioelectronics, 79 (2016) 320-326.
[4] N. Liu, Z. Ma, Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes,Biosensors and Bioelectronics, 51 (2014) 184-190.
[5] U.Jensen, E. Ferapontova, D.Sutherland,Quantifying protein adsorption and function at nanostructured materials: Enzymatic activity of glucose oxidase at GLAD structured electrodes, Langmuir, 28 (2012) 11106-11114.
[6] P.Rafighi, M.Tavahodi, B.Haghighi, Fabrication of a thirdgeneration glucose biosensor using graphene-polyethyleneimine-gold nanoparticles hybrid,Sens. Actuators:B, 232 (2016) 454−461.
[7] H. Zhong, R. Yuan, Y.Chai, W. Li, X. Zhong, Y. Zhang, In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: Characterization and application for a glucose amperometric biosensor, Talanta, 85 (2011) 104-111.
[8] J. Lu, I. Do, L. Drzal, R. Worden, I. Lee, Nanometal decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response, ACS Nano, 2 (2008) 1825-1832.
[9] M. Foglia, G. Alvarez, P. Catalano, A. Mebert, L.Diaz, T. Coradin, M. Desimone, Recent patents on the synthesis and application of silica nanoparticles for drug delivery, Recent Patents on Biotechnology, 5 (2011) 54-61.
[10] Y. Sun, B. Zhou, Y. Lin, W. Wang, K. Fernando, P. Pathak, M. Meziani, B. Harruff, X. Wang, H. Wang, P. Luo, H. Yang, M. Kose, B. Chen, L. Veca, S. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence, Journal of the American Chemical Society, 21 (2006) 7756-7757.
[11] H. Chang, L. Tang, Y. Wang, J. Jiang, J. Li, Graphene fluorescence resonance energy transfer aptasensor for the hrombin detection, Analytical Chemistry, 82 (2010) 2341-2346.
[12] M. Ma, J. Gu,M. Yang, Z. Li, Z. Lu, Y. Zhang, P. Xing, S. Li, X. Chu, Y. Wang, Controllable self-assemblies of sodium benzoate in different solvent environments, RSC Advances, 5 (2015) 70178-70185.
[13] S. Su, J.Wang, E. Vargas, J. Wei, R. Martínez-Zaguilán, S. Sennoune, M. Pantoya, S. Wang, J. Chaudhuri, J. Qiu, Porphyrin immobilized nanographene oxide for enhanced and targeted photothermal therapy of brain cancer, ACS Biomaterials Science and Engineering, 2 (2016) 1357-1366.
[14] W. Grosse, J. Champavert, S. Gambhir, G. Wallace, S. Moulton, Aqueous dispersions of reduced graphene oxide and multi wall carbon nanotubes for enhanced glucose oxidase bioelectrode performance, Carbon, 61 (2013) 467-475.
[15] S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603-605.
[16] D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature, 363 (1993) 605-607.
[17] Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Biocompatible graphene oxide-based glucose biosensors, Langmuir, 26 (2010) 6158-6160.
[18] K. Atacan, B. Çakiroğlu, M. Özacar, Efficient protein digestion using immobilized trypsin onto tannin modified Fe3O4 magnetic nanoparticles, Colloids and Surfaces B: Biointerfaces, 156 (2017) 9-18.
[19] S. Tadepalli, H. Hamper, S. Park, S. Cao, R. Naik, Adsorption behavior of silk fibroin on amphiphilic graphene oxide. ACS Biomaterials Science and Engineering, 2 (2016) 1084-1092.
[20] K. Atacan, M. Çakiroğlu, M. Ozacar, Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion,International Journal of Biological Macromolecules, 97 (2017) 148-155.
[21] D.Wu,Y. Gao, W. Li, X. Zheng, Y. Chen, Q. Wang, Selective Adsorption of La3+ using a tough alginate-clay-poly (nisopropylacrylamide) hydrogel with hierarchical pores and reversible re-deswelling/swelling cycles, ACS Sustainable Chemistry and Engineering, 4 (2016) 6732-6743.
[22] Y. Takemoto, H. Ajiro, M. Akashi, Hydrogen-bonded multilayer films based on poly(n-vinylamide) derivatives and tannic acid, Langmuir, 31 (2015) 6863-6869.
[23] N. Kovtyukhova, P. Ollivier, B. Martin, T. Mallouk, S. Chizhik, E. Buzaneva, A. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chemistry of Materials, 11 (1999) 771-778.
[24] M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72 (1976) 248-254.
[25] M. Franssen, P. Steunenberg, E. Scott, H. Zuilhof, J. Sanders, Immobilised enzymes in biorenewables production,Chemical Society Reviews, 42 (2013) 6491-6533.
[26] Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance, ACS Nano, 4 (2010) 3187-3194.
[27] J. Fowler, M. Allen, V. Tung, Y. Yang, R. Kaner, B. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano, 3 (2009) 301-306.
[28] Y. Dan, Y. Lu, N.Kybert, Z. Luo, A. Johnson, Intrinsic response of graphene vapor sensors, ACS Nano Letter, 9 (2009) 1472-1475.
[29] Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Biocompatible graphene oxide-based glucose biosensors, Langmuir, 26 (2010) 6158-60.
[30] W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Graphene-based antibacterial paper, ACS Nano, 4 (2010) 4317-4323.
[31] Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, Transparent, flexible, all-reduced graphene oxide thin film transistors, ACS Nano, 5 (2011) 5038-5044.
[32] X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, Nano-graphene oxide for cellular imaging and drug delivery, Nano Research, 1 (2008) 203-212.
[33] G. Zhou, D. Wang, F. Li, L. Zhang, N. Li, Z. Wu. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries, Chemistry of Materials, 22 (2010) 5306-5313.
[34] C. Guo, H. Yang, Z. Sheng, Z. Lu, Q. Song, C. Li, Layered graphene/quantum dots for photovoltaic devices, Angewandte Chemie International Edition, 49 (2010) 3014-3027.
[35] C. Peng, W. Hu, Y. Zhou, C. Fan, Q. Huang, Intracellular imaging with a graphenebased fluorescent probe, Small, 6 (2010) 1686-1692.
[36] J. Williams, L. DiCarlo, C. Marcus, Quantum-Hall effect in a gate-controlled pn junction of graphene, Science, 317 (2007) 638-641.
[37] C. XianáGuo, C. MingáLi, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance, Energy, Energy & Environmental Science, 4 (2011) 4504-4517.
[38] F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics, Nature Photonics, 4 (2010) 611-622.
[39] V.Eswaraiah, V.Sankaranarayanan, S.Ramaprabhu, Graphene-based engine oil nanofluids for tribological applications, ACS Applied Materials & Interfaces, 3 (2011) 4221-4227.
[40] Z. Sui, Q. Meng, X. Zhang, R. Ma, B. Cao, Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification, Journal Material Chemistry, 22 (2012) 8767-8771.
[41] Y. Zhao, C. Jiang, C. Hu, Z. Dong, J. Xue, Y. Meng. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers, ACS Nano, 7 (2013) 2406-2412.
[42] H. Sun, Z. Xu, C. Gao, Multifunctional, ultraflyweight, synergistically assembled carbon aerogels, Advanced Materials, 25 (2013) 2554-2560.
[43] M. Shin, K. Kim, W. Shim, J. Yang, H. Lee, Tannic acid as a degradable mucoadhesive compound,ACS Biomaterials Science and Engineering, 2 (2016) 687-696.
[44] K. Xiong, P. Qi, Y. Yang, X. Li, H. Qiu, X. Li, R. Shen, Q. Tu, Z. Yang, N. Huang, Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups, RSC Advances, 6 (2016) 17188-17195.
[45] S. Çakar, N. Güy, M. Özacar, F. Findik, Investigation of vegetable tannins and their iron complex dyes for dye sensitized solar cell applications, Electrochimica Acta, 209 (2016) 407-422.
[46] T. Terse-Thakoor, K. Komori, P. Ramnani, I. Lee, A. Mulchandani, Electrochemically functionalized seamless threedimensional graphene-carbon nanotube hybrid for direct electron transfer of glucose oxidase and bioelectrocatalysis, Langmuir, 31 (2015) 13054-13061.
[47] V. Mani, B. Devadas, S. Chen, Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor, Biosensors and Bioelectronics, 41 (2013) 309-315.
[48] M. Jose, S. Marx, H. Murata, R. Koepsel, A.Russell, Direct electron transfer in a mediator-free glucose oxidase-based carbon nanotube-coated biosensor, Carbon, 50 (2012) 4010-4020.
[49] S. Sali, H. Mackey, A. A. Abdala, Effect of graphene oxide synthesis method on properties and performance of polysulfone-graphene oxide mixed matrix membranes, Nanomaterials, 9 (2019) 769-775.
[50] X. Ji, P. Herle, Y. Rho, L. Nazar, Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of Tri-Block polymers, Chemistry of Materials,19 (2007) 374-383.
[51] A. N. Ahmad, A. Kausar, B. Muhammad, An investigation on 4-aminobenzoic acid modified polyvinyl chloride/graphene oxide and PVC/graphene oxide based nanocomposite membranes, Journal of Plastic Film & Sheeting, 32 (2016) 419-448.
[52] N. Sorokina, M. Khaskov, V. Avdeev, I. Nikol Skaya, Reaction of graphite with sulfuric acid in the presence of KMnO4, Russian Journal of General Chemistry, 75 (2005) 162-168.
[53] S. Y. Toh, K. S. Loh, S. K. Kamarudin, W. R. Daud, Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation, Chemical Engineering Journal, 251 (2014) 422-434.
[54] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of Materials, 19(2007) 4396-4404.
[55] D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. Alemany, W. Lu, J. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806-4814.
[56] C.R.Yang, S. F. Tseng, Y. T. Chen, Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations, Applied Surface Science, 444 (2018) 578-583.
[57] Y. Xu, K. Sheng, C. Li, G. Shi, Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide, Journal of Material Chemistry, 21 (2011) 7376-7380.
[58] Y. Q. Niu, Fang, X. Zhang, P. Zhang, Y. Li, Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment, Physics Letter A, 380 (2016) 3128-3132.
[59] B. C. Brodie, XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London. 149, (1859) 249-259.
[60] H. Ma, M. Ma, J. Zeng, X. Guo, Y. Ma, Hydrothermal synthesis of graphene nanosheets and its application in electrically conductive adhesives, Materials Letters,178(2016) 181-184.
[61] S. P. Lonkar, V. Pillai, A. Abdala, V. Mittal, In situ formed graphene/ZnO nanostructured composites for low temperature hydrogen sulfide removal from natural gas, RSC Advances, 6 (2016) 81142-81150.
[62] S. P. Lonkar, V. V. Pillai, S. Stephen, A. Abdala, V. Mittal, Facile in situ fabrication of nanostructured graphene-CuO hybrid with hydrogen sulfide removal capacity, Nano-Micro Letters, 8 (2016) 312-319.
[63] R. K. Prud’Homme, I. A. Aksay, A. Abdala, Thermally exfoliated graphite oxide,
(2011) Patent No. 8066964.
[64] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chemical Physics Letters, 287 (1998) 53-56.
[65] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, 39 (2010) 228-240.
[66] J. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. Tascon, Graphene oxide dispersions in organic solvents, Langmuir, 24 (2008) 10560-10564.
[67] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, Graphene oxide: the mechanisms of oxidation and exfoliation, Journal Material Science, 47 (2012) 4400-4409.
[68] P. Chouke, A. Potbhare, G. Bhusari, S. Somkuwar, Dadamia PMD Shaik, R. Mishra, R.G. Chaudhary, Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity, Advanced Materials Letters, 10 (2018) 355-360.
[69] M. Khan, A.H. Al-Marri, M. Khan, N. Mohri, S.F. Adil, A. Al-Warthan, Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide, RSC Advances, 4 (2014) 24119-24125.
[70] F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis and characterization of graphene nanosheets, Materials Research Bulletin, 63 (2015) 51-57.
[71] R. K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S. S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application, Materials Letter,160(2015) 355-358.
[72] M. Nasrollahzadeh, M. Maham, A. Rostami-Vartooni, M. Bagherzadehc, S. Mohammad Sajadi, Barberry fruit extract assisted in situ green synthesis of Cu nanoparticles supported on a reduced graphene oxide-Fe3O4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions, RSC Advances, 5 (2015) 64769.
[73] J. Li, G. Xiao, C. Chen, R. Li, D. Yan, Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer, Journal of Material Chemistry A, 1 (2013) 1481-1487.
[74] M. Mitra, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, Reduction of graphene oxide through a green and metal-free approach using formic acid, Diamond and Related Materials, 37 (2013) 74-79.
[75] Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Green preparation of reduced graphene oxide for sensing and energy storage applications, Scientic Reports, 4 (2014) 2525-2535.
[76] N. Kim, P. Khanra, T. Kuila, D. Jung, J. Lee, Efficient reduction of graphene oxide using Tin-powder and its electrochemical performances for use as an energy storage electrode material, Journal of Material Chemistry A, 1 (2013) 11320-11328.
[77] Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder, Carbon, 48 (2010) 1686-1689.
[78] T. A. Pham, J. S. Kim, J. S. Kim, Y. T. Jeong, One-step reduction of graphene oxide with L-glutathione, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384 (2011) 543-548.
[79] J. Ma, X. Wang, Y. Liu, T. Wu, Y. Liu, Y. Guo, R. Li, X. Sun, F.Wu, C. Lia J. Gao, Reduction of graphene oxide with l-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte, Journal of Material Chemistry A, 1 (2013) 2192-2201.
[80] X. Kanga, J. Wanga, H. Wua, Ilhan A. Aksayc, J. Liua, Y. Lina, Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing, Biosensors and Bioelectronics, 25 (2009) 901-905.
[81] C. Liu, J. Zhang, E.Yifeng, J.Yue , L. Chen, D.Li,One-pot synthesis of graphene-chitosan nanocomposites modified carbon paste electrode for selective determination of dopamine, Electronic Journal of Biotechnology,17 (2014) 183-188.
[82] H. Peng, L. Meng, L. Niu, Q. Lu, Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid, The Journal of Physical Chemistry C, 116 (2012) 16294-16299.
[83] B. Kartick, S. Srivastava, Green synthesis of graphene,Journal of Nanoscience Nanotechnology, 13 (2013) 4320-4324.
[84] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS Nano,4 (2010) 2429-2437.
[85] O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner, Carbon, 50 (2012) 1853-1860.
[86] S. Gurunathan, J. Han, E. Kim, D. N. Kwon, J. K. Park, J. H. Kim, Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene, Journal of Nanobiotechnology, 12 (2014) 41.
[87] S. Gurunathan, J. W. Han, J. H. Park, V. Eppakayala, J. H. Kim, Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene, International Journal of Nanomedicine, 9 (2014) 363-377.
[88] O. Akhavan, M. Kalaee, Z. Alavi, S. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide, Carbon, 50 (2012) 3015-3025.
[89] S. Bose, T. Kuila, A. K. Mishra, N. H. Kim, J. H. Lee, Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method, Journal of Material Chemistry, 22 (2012) 9696-9703.
[90] H. J. Chu, C. Y. Lee, N. H. Tai, Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode, Carbon,80 (2014) 725-733.
[91] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid, Chemical Communication, 46 (2010) 1112-1114.
[92] J. Ma, X. Wang, Y. Liu, T. Wu, Y. Liu, Y. Guo, R. Li, X. Sun, F.Wu, C. Lia J. Gao, Reduction of graphene oxide with l-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte, Journal of Material Chemistry A, 1 (2013) 2192-2201.
[93] A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide, Journal of Material Chemistry, 21 (2011) 10907-10914.
[94] Q. Zhuo, J. Gao, M. Peng, L. Bai, J. Deng, Y. Xia, Y. Ma, J. Zhong, X. Sun., Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst, Carbon, 52 (2013) 559-564.
[95] X. Li, X. Xu, F. Xia, L. Bu, H. Qiu, M. Chen, L. Zhang, J. Gao., Electrochemically active MnO2/rGO nanocomposites using Mn powder as the reducing agent of GO and MnO2 precursor, Electrochimica Acta, 130 (2014) 305-313.
[96] S. Yang, W. Yue, D. Huang, C. Chen, H. Lin, X. Yang, A facile green strategy for rapid reduction of graphene oxide by metallic zinc, RSC Advances, 2 (2012) 8827-8832.
[97] C. Li, X. Wang, Y. Liu, W. Wang, J. Wynn, J. Gao, Using glucosamine as a reductant prepare reduced graphene oxide and its nanocomposites with metal nanoparticles, Journal of Nanoparticle Research, 14 (2012) 1-11.
[98] Y. Wang, Z. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites, ACS Applied Materials & Interfaces, 3 (2011) 1127-1133.
[99] S. Gurunathan, J. Han, J. Kim, Humanin: a novel functional molecule for the green synthesis of graphene, Colloids and Surfaces B: Biointerfaces,11 (2013) 376-383.
[100] P. Khanra, T. Kuila, N. Kim, S. Bae, D.-s. Yu, J. Lee, Simultaneous biofunctionalization and reduction of graphene oxide by baker’s yeast, Chemical Engineering Journal,183 (2012) 526-533.
[101] D. Dreyer, S. Murali, Y. Zhu, R. Ruoff, C. Bielawski, Reduction of graphite oxide using alcohols, Jornal Material Chemistry, 21(2011) 3443-3457.
[102] S. Liu, J. Tian, L. Wang, X. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection, Carbon, 49(2011) 3158-3164.
[103] D. Chen, L. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid, Nanotechnology, 22 (2011) 325601.
[104] D.Tran, S. Kabiri, D. Losic, A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids, Carbon. 76 (2014) 193-202.
[105] M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, The Journal of Physical Chemistry C, 114 (2010) 6426-6432.
[106] S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts, Carbon. 50 (2012) 5331-5339.
[107] R. Zaid, F.Chong, E. Y. L. Teo, E. P. Ng, K. F. Chong, Reduction of graphene oxide nanosheets by natural beta carotene and its potential use as supercapacitor electrode, Arabian Journal of Chemistry, 8 (2015) 560-569.
[108] T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J. H. Lee, A green approach for the reduction of graphene oxide by wild carrot root, Carbon, 50 (2012) 914-921.
[109] D. Suresh, M. Kumar, H. Nagabhushana, S. Sharma, Cinnamon supported facile green reduction of graphene oxide, its dye elimination and antioxidant activities, Materials Letters, 151 (2015) 93-95.
[110] D. Suresh, H.Nagabhushana, S. Sharma, Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties, Materials Letters, 142 (2015) 4-6.
[111] D. Li, M. Müller, S. Gilje, R. Kaner, G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology,3 (2008) 101-105.
[112] A. Khaled, M. Ali, K. Hantanasirisakul, A. Abdala, P. Urbankowski, M. Zhao, B. Anasori, Y.Gogotsi, B. Aissa, Effect of synthesis on performance of iron oxide anode material for lithium-ion batteries, Langmuir, 34 (2018) 11325-11334.
[113] L. Zhang, G. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability, The Journal of Physical Chemistry C,115, (2011) 17206-17212.
[114] C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Z. Jiang, Large-scale synthesis of SnO2nanosheets with high lithium storage capacity, Journal of the American Chemical Society, 132 (2010)46-47.
[115] L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries, Electrochemistry Communications, 12 (2010)1383-1386.
[116] K. Fukuda, K. Kikuya, K. Isono, M. Yoshio, Foliated natural graphite as the anode material for rechargeable lithium-ion cells, Journal of Power Sources, 69 (1997) 165-168.
[117] M. Goh, M.Pumera, Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts, Electrochemistry Communications, 12 (2010) 1375-1377.
[118] L. Buglione, E.Chng, A. Ambrosi, Z. Sofer, M. Pumera,Graphene materials preparation methods have dramatic influence upon their capacitance, Electrochemistry Communications,14 (2012) 5-8.
[119] S. Cho, J. Ung, C. Kim, I.Kim,Rational design of 1-D Co3O4nanofibers@low content graphene composite anode for high performance Li-Ion batteries, Scientific Reports, 7 (2017) 45105
[120] M. Jing, M. Zhou, G. Li, Z. Chen, W. Xu, X. Chen, and Z. Hou, Graphene-embedded Co3O4 rose-spheres for enhanced performance in Lithium Ion batteries, ACS Applied Materials & Interfaces, 9 (2017) 9662-9668.
[121] D.Su, S. Dou, G.Wang, Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries, Nano Research, 7 (2014) 794-803.
[122] Y. Gua, M. Xinga, J. Zhang, Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites, Applied Surface Science, 319 (2014) 8-15.
[123] M. Fagnoni, D. Dondi, D. Ravelli, A. Albini, Photocatalysis for the formation of the C−C Bond,Chemical Reviews, 107 (2007) 2725-2756.
[124] G. Colon, J. M. Sanchez-Espana, M.C. Hidalgo, J.A. Navıo, Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation, Journal of Photochemistry and Photobiology A: Chemistry,179 (2006) 20-27.
[125] M. Z. Iqbal, P. Pal, M. Shoaib, A. A. Abdala, Efficient removal of different basic dyes using graphene, Desalination and Water Treatment, 68 (2017) 226-235.
[126] V. Sonkusare, R.G. Chaudhary, G. Bhusari, A. Rai, H. Juneja, Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles, Nano-Structure & Nano-Objects, 13 (2018) 121-131.
[127] N. Serpone, D. Lawless, R. Khairutdinov,Subnanosecond relaxation dynamics in TiO2 Colloidal Sols (Particle Sizes R, = 1.0- 13.4 nm) relevance to heterogeneous photocatalysis, Journal Physical Chemistry, 99 (1995) 16655-16661.
[128] Q. Rahman , M. Ahmad, S.Misra, M. Lohani, Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles, Materials Letters 91 (2013) 170-174
[129] M. Iqbal, A. Abdala, Thermally reduced graphene: synthesis, characterization and dye removal applications, RSC Advances, 3 (2013) 24455-24464.
[130] N. Daneshvar,A. Oladegaragoze, N. Djafarzadeh, Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials,129 (2006) 116-122.
[131] T. Sauer, G. Cesconeto Neto, H. José, R. Moreira. Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor,Journal of Photochemistry and Photobiology A: Chemistry, 149 (2002) 147-154.
[132] I. Poulios, M. Kositzi, A. Kouras, Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions, Journal of Photochemistry and Photobiology A: Chemistry,115 ( 1998) 175-183.
[133] D. Dionysiou , A. Khodadoust, A. Kern, M. Suidan, Isabelle Baudin, Jean-Michel Laîné, Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor, Applied Catalysis B: Environmental, 24 (2000) 139-155.
[134] Z. Ghouri, K. Elsaid, A. Abdala, S.Meer, N. Barakat, Surfactant/organic solvent free single-step engineering of hybrid graphene-Pt/TiO2 nanostructure: Efficient photocatalytic system for the treatment of wastewater coming from textile industries,Scientific Reports, 8 (2018) 14656.
[135] J. Zhang, Z. Xiong, X. Zhao, Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation, Journal of Materials Chemistry, 21 (2011) 3634-3640
[136] R. Bunsen, Ueber eine neue Construction der galvanischen Säule, Justus Liebigs Annalen der Chemie, 38 (1841) 311-313.
[137] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.
[138] K. Drew, G. Girishkumar, K. Vinodgopal, Prashant V. Kamat, Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt−Ru hybrid catalyst for methanol oxidation, The Journal of Physical Chemistry B,109 (2005) 11851-11857.
[139] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A. Mondal, A.K. Potbhare, R. Kumar Mishra, A.A. Abdala, H.D. Juneja,Mesoporous Octahedron-Shaped Tricobalt Tetroxide Nanoparticles for Photocatalytic Degradation of Toxic Dyes, ACS Omega, 5 (2020) 7823-7835.
[140] A. Abu-Nada, G. McKay, A. Abdala, Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater, Nanomatrials, 10 (2020) 595.
[141] S. P. Lonkar, V. Pillai, A. Abdala, Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity, Applied Surface Science, 465, (2019) 1107-1113.
[142] R.G. Chaudhary, G.S. Bhusari, A.D. Tiple, A.R. Rai, S.R. Somkuvar, A.K. Potbhare, T.L. Lambat, P.P. Ingle, A. A. Abdala, Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects, Current Pharmaceutical Design, 25 (2019) 4013-4029.
[143] Y. Zhang, N. Zhang, Z. R. Tang, Y-J Xu. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano, 6 (2012) 9777-9789.
[144] R. Bagade, V. Sonkusare, A. Potbhare, R. Chaudhary, R. Husain, H. Juneja, Fabrication of microflower-shaped mesoporous Fe (II) chelate polymer for photocatalytic performance under visible light, Material Today: Proceedings, 15 (2019) 566-577.
[145] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction and photocatalytic performances, Chemical Society Reviews,43 (2014) 5234-5244.
[146] J. Tanna, R.G. Chaudhary, N. Gandhare, A. Rai, S. Yerpude, H. Juneja, Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity, Journal of Experimental Nanoscience,11 (2016) 884-900.
[147] N. Gandhare, R.G. Chaudhary, M.P. Gharpure, V.P. Meshram, H. Juneja, An efficient and one-pot synthesis of 2, 4, 5-trisubstituted imidazole compounds catalyzed by copper nanoparticles, Journal of the Chinese Advanced Material Society, 3 (2015) 270-279.
[148] J. Tanna, R.G. Chaudhary, N. Gandhare, A. Mondal, H. Juneja, Silica-coated nickel oxide a core-shell nanostructure: synthesis, characterization and its catalytic property in one-pot synthesis of malononitrile derivative, Journal of the Chinese Advanced Material Society, 5 (2017) 103-117.
[149] N. Gandhare, V. Meshram, R.G. Chaudhary, H.D. Juneja,Cu-nanoparticles as catalyst for synthesis of 1H-imidazoles under microwave irradiation, Bionanomaterial Frontier, 5 (2012) 12-14.
[150] J. Tanna, R.G. Chaudhary, V. Sonkusare, H. Juneja, CuO nanoparticles: synthesis, characterization and reusable catalyst for polyhydroquinoline derivatives under ultrasonication, Journal of the Chinese Advanced Materials Society, 4 (2016) 110-122.
[151] C. Hu, T. Lu, F. Chen, R. Zhang, A brief review of graphene-metal oxide composites synthesis and applications in photocatalysis, Journal of the Chinese Advanced Materials Society, 1(2013). 21-39.
[152] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chemical Society Reviews, 41 (2012) 782-796.
[153] M. Z. Iqbal, P. Pal, M. Shoaib, A. A. Abdala, Efficient removal of different basic dyes using graphene, Desalination and Water Treatment, 68 (2017) 226-235.
[154] K. Sauer, A. Camper, G. Ehrlich, J. Costerton, D. Davies, Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm, Journal of Bacteriology, 184 (2002) 1140-1154.
[155] R. Bagade, R.G. Chaudhary, A. Potbhare, A. Mondal, M. Desimone, K. Dadure, R. Mishra, H. Juneja,Microspheres/custard apples copper (II) chelate polymer: characterization, docking, antioxidant and antibacterial assay, ChemistrySelect, 4 (2019) 6233-6244.
[156] C. Vecitis, K. Zodrow, S. Kang, M. Elimelech, Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes,ACS Nano, 4 (2010) 5471-7479.
[157] A. Potbhare, P. Chauke, S. Zahra, V. Sonkusare, R. Bagade, M. Umekar, R. G. Chaudhary, Microwave-mediated fabrication of mesoporous Bi-doped CuAl2O4 nanocomposites for antioxidant and antibacterial performances, Materials Today: Procdeengs, 15 (2019) 454-463.
[158] R.G. Chaudhary, J. Tanna, N. Gandhare, A. R. Rai, H. Juneja, Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity,Advanced Materials Letter, 6 (2015) 990-998.
[159] A. Potbhare, R.G. Chaudhary, P. Chouke, S. Yerpude, A. Mondal, V. Sonkusare, A. Rai, H. Juneja,Phytosynthesis of nearly monodisperse CuOnanospheres usingPhyllanthusreticulatus/Conyzabonariensis and its antioxidant/antibacterial assays, Material Science & Engineering C, 99 (2019) 783-793.
[160] S. Liu, T. H Zeng, M. Hofmann, E. Burcombe, J. Wei, R, Jiang, J. Kong, Y. Chen, Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress, ACS Nnao, 5 (2011) 6971-6980 ‘
[161] H. Jung, P. Verwilst, A. Sharma, J. Shin, J. Sessler, J. Kim, Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chemical Society Reviews, 47 (2018) 2280.
[162] H. Lin, S.Liao, S.Hung,The DC thermal plasma, synthesis of ZnOnanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 174 (2005) 82-87.
[163] C. Thomas, N. Saleh, R. Tilton, Lowry, B. Veronesi,Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticles neurotoxicity, Environment Science Technology, 40 (2006) 4346-4352.
[164] S. Liu, M. Hu, T. H. Zeng, Ran Wu, R.Jiang, J. Wei, L.Wang, J. Kong, Y.Chen, Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets, Langmuir, 28 (2012) 12364-12372
[165] D. Schubert, R. Dargusch, J. Raitano, S Chan, Cerium and yttrium oxide nanoparticles are neuroprotective, Biochemical and Biophysical Research Communications, 342 (2006) 86-91.
[166] A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, A. Flank,Cytotoxicity of CeO2nanoparticles for Escherichia coliphysico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology, 40 (2006) 6151-6156.
[167] J. Tanna, R.G. Chaudhary, H.D. Juneja, N. Gandhare, A. Rai, Histidine-capped ZnO nanoparticles: an efficient synthesis, spectral characterization and effective antibacterial activity, BioNanoScience, 5 (2015) 123-134.
[168] K. Krishnamoorthy, N. Umasuthan, R. Mohan, J. Lee, S-J. Kim, Science of Advanced Materials, 4 (2012) 1-7.
[169] X. Zeng, G. Wang, Y. Liua, X. Zhang, Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control, Environmental Science: Nano, 4 (2017) 2248-2266.
[170] T. Long, J. Tajuba, P. Sama, N. Saleh, C. Swartz, J. Parker, S, Hester, G. Lowry, B. Veronesi, Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro, Environmental Health Perspectives, 115 (2007) 1631-1637.
[171] S. Wang, R. Gao, F. Zhou, M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy, Journal of Material Chemistry, 14 (2014) 487-493.
[172] R. G. Chaudhary, V. Sonkusare, G. Bhusari, A. Mondal, D. Shaik, H. Juneja, Microwave-mediated synthesis of spinel-CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance, Research on Chemical Intermediates, 44 (2017) 2039-2060.
[173] F. Irwin, Biological effects of superoxide radical, Archives of Biochemistry and Biophysics, 247 (1986) 1-11.