Cellulose-Derived Electrodes for Energy Storage


Cellulose-Derived Electrodes for Energy Storage

Shiqi Li, Wenyue Li, Zhaoyang Fan

This chapter discusses cellulose-derived electrodes and their applications in supercapacitors and batteries. Earth-abundant cellulose can be extracted as microfibers, nanofibers, and nanocrystals with different properties. When functionalized with electroactive materials, cellulose fibers are attractive paper substrates for developing flexible and disposable energy storage devices used in wearable applications. Furthermore, these are renewable precursors to produce porous carbon and carbon nanofibers with a variety of morphologies and properties, which have found broad applications in conventional supercapacitors, high-frequency supercapacitors, Li-ion batteries, Li-S batteries, and other emerging battery technologies.

Cellulose, Porous Carbon, Carbon Nanofiber, Flexible Energy Storage, Lithium-Ion Batteries, Lithium-Sulfur Batteries, Supercapacitors, High-Frequency Supercapacitors

Published online 6/20/2020, 19 pages

Citation: Shiqi Li, Wenyue Li, Zhaoyang Fan, Cellulose-Derived Electrodes for Energy Storage, Materials Research Foundations, Vol. 78, pp 124-142, 2020

DOI: https://doi.org/10.21741/9781644900871-6

Part of the book on Biomass Based Energy Storage Materials

[1] H.A. Khalil, A. Bhat, A.I. Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydr. Polym. 87 (2012) 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
[2] I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review, Cellulose 17 (2010) 459-494. https://doi.org/10.1007/s10570-010-9405-y
[3] L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, D. Beneventi, Cellulose-based Li-ion batteries: A review, Cellulose 20 (2013) 1523-1545. https://doi.org/10.1007/s10570-013-9973-8
[4] V. Gupta, P. Carrott, R. Singh, M. Chaudhary, S. Kushwaha, Cellulose: A review as natural, modified and activated carbon adsorbent, Bioresource Technol. 216 (2016) 1066-1076. https://doi.org/10.1016/j.biortech.2016.05.106
[5] Z. Wang, P. Tammela, M. Strømme, L. Nyholm, Cellulose‐based supercapacitors: material and performance considerations, Adv. Energy Mater. 7 (2017) 1700130. https://doi.org/10.1002/aenm.201700130
[6] K. Gao, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, Cellulose nanofiber–graphene all solid-state flexible supercapacitors, J. Mater. Chem. A 1 (2013) 63-67. https://doi.org/10.1039/C2TA00386D
[7] M. Hamedi, E. Karabulut, A. Marais, A. Herland, G. Nyström, L. Wågberg, Nanocellulose aerogels functionalized by rapid layer‐by‐layer assembly for high charge storage and beyond, Angew. Chem. Int. Ed. 125 (2013) 12260-12264. https://doi.org/10.1002/ange.201305137
[8] L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage, Energy Environ. Sci. 6 (2013) 470-476. https://doi.org/10.1039/c2ee23977a
[9] S. Li, D. Huang, J. Yang, B. Zhang, X. Zhang, G. Yang, M. Wang, Y. Shen, Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices, Nano Energy 9 (2014) 309-317. https://doi.org/10.1016/j.nanoen.2014.08.004
[10] Z. Wang, P. Tammela, P. Zhang, M. Strømme, L. Nyholm, High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors, J. Mater. Chem. A 2 (2014) 16761-16769. https://doi.org/10.1039/C4TA03724C
[11] L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. 106 (2009) 21490-21494. https://doi.org/10.1073/pnas.0908858106
[12] S. Jeong, N. Böckenfeld, A. Balducci, M. Winter, S. Passerini, Natural cellulose as binder for lithium battery electrodes, J. Power Sources 199 (2012) 331-335. https://doi.org/10.1016/j.jpowsour.2011.09.102
[13] H. Wu, Y. Deng, J. Mou, Q. Zheng, F. Xie, E. Long, C. Xu, D. Lin, Activator-induced tuning of micromorphology and electrochemical properties in biomass carbonaceous materials derived from mushroom for lithium-sulfur batteries, Electrochim Acta (2017). https://doi.org/10.1016/j.electacta.2017.05.026
[14] S. Li, Z. Fan, Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors, Microporous Mesoporous Mater. 274 (2019) 313-317. https://doi.org/10.1016/j.micromeso.2018.09.002
[15] Z. Gao, Y. Zhang, N. Song, X. Li, Towards flexible lithium-sulfur battery from natural cotton textile, Electrochim Acta 246 (2017). https://doi.org/10.1016/j.electacta.2017.06.069
[16] W. Wang, Y. Sun, B. Liu, S. Wang, M. Cao, Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries, Carbon 91 (2015) 56-65. https://doi.org/10.1016/j.carbon.2015.04.041
[17] L.F. Chen, Z.H. Huang, H.W. Liang, W.T. Yao, Z.Y. Yu, S.H. Yu, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose, Energy Environ. Sci. 6 (2013) 3331-3338. https://doi.org/10.1039/c3ee42366b
[18] W. Luo, B. Wang, C.G. Heron, M.J. Allen, J. Morre, C.S. Maier, W.F. Stickle, X. Ji, Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation, Nano Lett. 14 (2014) 2225-2229. https://doi.org/10.1021/nl500859p
[19] H.W. Liang, Z.Y. Wu, L.F. Chen, C. Li, S.H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery, Nano Energy 11 (2015) 366-376. https://doi.org/10.1016/j.nanoen.2014.11.008
[20] E. Lorenc-Grabowska, P. Rutkowski, High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: kinetics and mechanism, Appl. Surf. Sci. 316 (2014) 435-442. https://doi.org/10.1016/j.apsusc.2014.08.024
[21] Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting, Nano Energy 39 (2017) 306-320. https://doi.org/10.1016/j.nanoen.2017.06.048
[22] N. Islam, S. Li, G. Ren, Y. Zu, J. Warzywoda, S. Wang, Z. Fan, High-frequency electrochemical capacitors based on plasma pyrolyzed bacterial cellulose aerogel for current ripple filtering and pulse energy storage, Nano Energy 40 (2017) 107-114. https://doi.org/10.1016/j.nanoen.2017.08.015
[23] Y. Liu, Z. Shi, Y. Gao, W. An, Z. Cao, J. Liu, Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes, ACS Appl. Mater. Interfaces 8 (2016) 28283-28290. https://doi.org/10.1021/acsami.5b11558
[24] X. Yang, B. Fei, J. Ma, X. Liu, S. Yang, G. Tian, Z. Jiang, Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes, Carbohydr. Polym. 180 (2018) 385-392. https://doi.org/10.1016/j.carbpol.2017.10.013
[25] S.C. Li, B.C. Hu, Y.W. Ding, H.W. Liang, C. Li, Z.Y. Yu, Z.Y. Wu, W.S. Chen, S.H. Yu, Wood-derived ultrathin carbon nanofiber aerogels, Angew. Chem. Int. Ed. 130 (2018) 7203-7208. https://doi.org/10.1002/ange.201802753
[26] C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose, Adv. Funct. Mater. 24 (2014) 3953-3961. https://doi.org/10.1002/adfm.201304269
[27] N. Islam, S. Wang, J. Warzywoda, Z. Fan, Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper, J. Power Sources 400 (2018) 277-283. https://doi.org/10.1016/j.jpowsour.2018.08.049
[28] W. Li, N. Islam, G. Ren, S. Li, Z. Fan, AC-filtering supercapacitors based on edge oriented vertical graphene and cross-linked carbon nanofiber, Materials 12 (2019) 604. https://doi.org/10.3390/ma12040604
[29] N. Islam, M.N.F. Hoque, Y. Zu, S. Wang, Z. Fan, Carbon nanofiber aerogel converted from bacterial cellulose for kilohertz AC-supercapacitors, MRS Adv. 3 (2018) 855-860. https://doi.org/10.1557/adv.2018.139
[30] G. Ren, X. Pan, S. Bayne, Z. Fan, Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam, Carbon 71 (2014) 94-101. https://doi.org/10.1016/j.carbon.2014.01.017
[31] G. Ren, M.N.F. Hoque, X. Pan, J. Warzywoda, Z. Fan, Vertically aligned VO2 (B) nanobelt forest and its three-dimensional structure on oriented graphene for energy storage, J. Mater. Chem. A 3 (2015) 10787-10794. https://doi.org/10.1039/C5TA01900A
[32] G. Ren, S. Li, Z.-. Fan, M.N.F. Hoque, Z. Fan, Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes, J. Power Sources 325 (2016) 152-160. https://doi.org/10.1016/j.jpowsour.2016.06.021
[33] N. Islam, M.N.F. Hoque, W. Li, S. Wang, J. Warzywoda, Z. Fan, Vertically edge-oriented graphene on plasma pyrolyzed cellulose fibers and demonstration of kilohertz high-frequency filtering electrical double layer capacitors, Carbon 141 (2019) 523-530. https://doi.org/10.1016/j.carbon.2018.10.012
[34] N. Islam, J. Warzywoda, Z. Fan, Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors, Nano-Micro Lett. 10 (2018) 9. https://doi.org/10.1007/s40820-017-0162-4
[35] Y. Wan, Z. Yang, G. Xiong, H. Luo, A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes, J. Mater. Chem. A 3 (2015) 15386-15393. https://doi.org/10.1039/C5TA03688G
[36] W. Mengya, L. Shun, Z. Yiming, H. Jianguo, Hierarchical SnO2/carbon nanofibrous composite derived from cellulose substance as anode material for lithium-ion batteries, Chemistry 21 (2015) 16195-16202. https://doi.org/10.1002/chem.201502833
[37] D. Shen, C. Huang, L. Gan, J. Liu, Z. Gong, M. Long, Rational design of Si@SiO2/C composite using sustainable cellulose as carbon resource for anode in lithium-ion batteries, ACS Appl. Mater. Interfaces 10 (2018) 7946-7954. https://doi.org/10.1021/acsami.7b16724
[38] J.M. Kim, V. Guccini, K.D. Seong, J. Oh, G. Salazar-Alvarez, Y. Piao, Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes, Carbon (2017). https://doi.org/10.1016/j.carbon.2017.03.028
[39] S. Li, G. Ren, M.N.F. Hoque, Z. Dong, J. Warzywoda, Z. Fan, Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries, Appl. Surf. Sci.396 (2016) 637–643. https://doi.org/10.1016/j.apsusc.2016.10.208
[40] L. Yu, N. Brun, K. Sakaushi, J. Eckert, M.M. Titirici, Hydrothermal nanocasting: synthesis of hierarchically porous carbon monoliths and their application in lithium–sulfur batteries, Carbon 61 (2013) 245-253. https://doi.org/10.1016/j.carbon.2013.05.001
[41] M.K. Rybarczyk, H.-J. Peng, C. Tang, M. Lieder, Q. Zhang, M.M. Titirici, Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries, Green Chem. 18 (2016) 5169-5179. https://doi.org/10.1039/C6GC00612D
[42] Y. Li, L. Wang, B. Gao, X. Li, Q. Cai, Q. Li, X. Peng, K. Huo, P.K. Chu, Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium–sulfur batteries, Electrochim Acta 229 (2017) 352-360. https://doi.org/10.1016/j.electacta.2017.01.166
[43] J. Xu, K. Zhou, F. Chen, W. Chen, X. Wei, X.-W. Liu, J. Liu, Natural integrated carbon architecture for rechargeable lithium–sulfur batteries, ACS Sustain. Chem. Eng. 4 (2016) 666-670. https://doi.org/10.1021/acssuschemeng.5b01258
[44] S. Li, T. Mou, G. Ren, J. Warzywoda, B. Wang, Z. Fan, Confining sulfur species in cathodes of lithium–sulfur batteries: insight into nonpolar and polar matrix surfaces, ACS Energy Lett. 1 (2016) 481-489. https://doi.org/10.1021/acsenergylett.6b00182
[45] G. Ren, S. Li, Z.-X. Fan, J. Warzywoda, Z. Fan, Soybean-derived hierarchical porous carbon with large sulfur loading and sulfur content for high-performance lithium–sulfur batteries, J. Mater. Chem. A 4 (2016) 16507-16515. https://doi.org/10.1039/C6TA07446D
[46] P. Quan, T. Juntao, H. He, L. Xiao, H. Connor, K.C. Tam, L.F. Nazar, A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries, Adv. Mater. 27 (2015) 6021. https://doi.org/10.1002/adma.201502467
[47] M. Chen, S. Jiang, S. Cai, X. Wang, K. Xiang, Z. Ma, P. Song, A.C. Fisher, Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium-sulfur batteries, Chem. Eng. J. 313 (2017) 404-414. https://doi.org/10.1016/j.cej.2016.12.081
[48] S. Li, T. Mou, G. Ren, J. Warzywoda, Z. Wei, B. Wang, Z. Fan, Gel based sulfur cathodes with a high sulfur content and large mass loading for high-performance lithium–sulfur batteries, J. Mater. Chem. A 5 (2017) 1650-1657. https://doi.org/10.1039/C6TA09841J
[49] S. Li, J. Warzywoda, S. Wang, G. Ren, Z. Fan, Bacterial cellulose derived carbon nanofiber aerogel with lithium polysulfide catholyte for lithium–sulfur batteries, Carbon 124 (2017) 212-218. https://doi.org/10.1016/j.carbon.2017.08.062
[50] Y. Huang, L. Wang, L. Lu, M. Fan, F. Yuan, B. Sun, J. Qian, Q. Hao, D. Sun, Preparation of bacterial cellulose based nitrogen-doped carbon nanofibers and their applications in the oxygen reduction reaction and sodium–ion battery, New J. Chem. 42 (2018) 7407-7415. https://doi.org/10.1039/C8NJ00708J
[51] W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen, X. Ji, Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries, J. Mater. Chem.A 1 (2013) 10662-10666. https://doi.org/10.1039/c3ta12389h
[52] H. Yamamoto, S. Muratsubaki, K. Kubota, M. Fukunishi, H. Watanabe, J. Kim, S. Komaba, Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries, J. Mater. Chem. A 6 (2018) 16844-16848 https://doi.org/10.1039/C8TA05203D
[53] H. Zhu, S. Fei, L. Wei, S. Zhu, M. Zhao, B. Natarajan, J. Dai, L. Zhou, X. Ji, R.S. Yassar, Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries, Nano Energy 33 (2017) 37-44. https://doi.org/10.1016/j.nanoen.2017.01.021