Nanocellulose in Paper Making


Nanocellulose in Paper Making

Vismaya N. Kumar, Sharrel Rebello, Embalil Mathachan Aneesh, Raveendran Sindhu, Parameswaran Binod, Reshmy R., Eapen Philip and Ashok Pandey

Nanocellulose is cellulose fibrils with one of its dimensions in nanometer range. It shares specific properties of both cellulosic and nanoscale materials. The two main families of nanocellulose particles include cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). Both families have found use in paper making with CNCs limited to surface coatings and CNFs have a wide range of use in paper making. Nanocellulose has gained great interest in the paper and pulp industry because of its abundant availability, renewable and eco-friendly nature. Nanopaper is advantageous over traditional pulp paper due to its high strength, optical transparency, thermal stability, smoothness, etc. It has been widely used as wet and dry strength agent and also as a coating to improve barrier properties of the paper. The barrier properties may be destroyed due to the hydrophilic nature of nanopaper, but it can be improved by surface modifications. This review addresses an overview of the currently adopted method in the pulp and paper industry, the role of nanotechnology in the industry, the classification of nanocellulose, and its application in paper making.

Nanocellulose, Paper Making, Cellulose Nanofibrils, Cellulose Nanocrystals

Published online 4/20/2020, 14 pages

Citation: Vismaya N. Kumar, Sharrel Rebello, Embalil Mathachan Aneesh, Raveendran Sindhu, Parameswaran Binod, Reshmy R., Eapen Philip and Ashok Pandey, Nanocellulose in Paper Making, Materials Research Foundations, Vol. 73, pp 184-197, 2020


Part of the book on Advanced Applications of Polysaccharides and their Composites

[1] P. Samyn, A. Barhoum, T. Öhlund, A. Dufresne, nanoparticles and nanostructured materials in papermaking, J. mater. Sci. 53(1) (2018) 146-184.
[2] E.C. Lengowski, E.A. Bonfatti Júnior, M.M.N. Kumode, M.E. Carneiro, K.G. Satyanarayana, Nanocellulose in the Paper Making. In: Inamuddin, Thomas S., Kumar Mishra R., Asiri A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. (2019), pp 1027-1066.
[3] K. P. Y. Shak, Y. L. Pang, S. K. Mah, Nanocellulose: Recent advances and its prospects in environmental remediation, Beilstein J. Nanotechnol. 9(1) (2018) 2479-2498.
[4] P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, Nanocellulose : Extraction and application, Carbon Resourc. Conver. 1 (2018) 32-43.
[5] R. J. Moon, A. Martini, J. Nairn, J. Youngblood, A. Martini, J.Nairn, Chem Soc Rev Cellulose nanomaterials review : structure, properties, and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941-3994.
[6] Anwar, Z., Gulfraz, M., & Irshad, M. (2014). ScienceDirect Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy : A brief review. JRRAS, 1–11.
[7] J. George, S. N. Sabapathi, Cellulose nanocrystals: synthesis, functional properties, and applications, Nanotech. Sci. application. 8 (2015) 45.
[8] H. Xie, H. Du, X. Yang, C. Si, Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials, Int. J. Polym Sci. 2018 (2018) 25.
[9] M. Nasir, R. Hashim, O. Sulaiman, M. Asim, Nanocellulose: Preparation methods and applications. In Cellulose-Reinforced Nanofibre Composites, Woodhead Publishing. 2017 pp. 261-276.
[10] M. P. Menon, R. Selvakumar, S. Ramakrishna, Extraction and modification of cellulose nanofibers derived from biomass for environmental application, RSC Adv. 7(68) (2017) 42750-42773.
[11] F. Mohammadkazemi, M. Azin, A. Ashori, Production of bacterial cellulose using different carbon sources and culture media, Carbohydr. Polym. 117 (2015) 518–523.
[12] S. Tanskul, K. Amornthatree, N. Jaturonlak, A new cellulose-producing bacterium, Rhodococcus sp. MI 2 : Screening and optimization of culture conditions, Carbohydr. Polym. 92(1) (2013) 421–428.
[13] P. Gatenholm, D. Klemm, Bacterial nanocellulose as a renewable material for biomedical applications, MRS bull. 5(3) (2010) 208-213.
[14] A.F. Jozala, L.C. de Lencastre-Novaes, A.M. Lopes, V. de Carvalho Santos-Ebinuma, P.G. Mazzola, A. Pessoa-Jr, M.V. Chaud, Bacterial nanocellulose production and application: a 10-year overview, Appl. Microbiol. Biotechnol. 100(5) (2016) 2063-2072.
[15] A. Dufresne, Nanocellulose Processing Properties and Potential Applications, Curr. Forest. Rep. (2019) 1-14.
[16] V.S. Chauhan, S.K. Chakrabarti, Use of nanotechnology for high performance cellulosic and papermaking products, Cellulose chem. Tech. 46(5) (2012) 389.
[17] M. Ankerfors, Microfibrillated cellulose: Energy-efficient preparation techniques and key properties (Doctoral dissertation, KTH Royal Institute of Technology) (2012).
[18] J. A. Sirviö, A. Kolehmainen, H. Liimatainen, J. Niinimäki, O.E. Hormi, Biocomposite cellulose-alginate films: Promising packaging materials, Food chem. 151 (2014) 343-351.
[19] J. P. Reddy, J. Rhim, Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose, Carbohydr. Polym. 110 (2014) 480–488.
[20] K. Syverud, P. Stenius, Strength and barrier properties of MFC films, Cellulose. 16(1), (2009) 75.
[21] C. Aulin, M. Gällstedt, T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose. 17(3) (2010) 559-574.
[22] E. L. Hult, M. Iotti, M. Lenes, Efficient approach to high barrier packaging using microfibrillar cellulose and shellac, Cellulose. 17(3), (2010). 575-586.
[23] H. Rautkoski, H. Pajari, H. Koskela, A. Sneck, P. Moilanen, Use of cellulose nanofibrils (CNF) in coating colors, Nordic Pulp Paper Res. J. 30(3) (2015) 511-518.
[24] C. Salas, T. Nypelö, C. Rodriguez-Abreu, C. Carrillo, O.J. Rojas, Nanocellulose properties and applications in colloids and interfaces, Curr. Opin. Colloid Interface Sci. 19(5) (2014) 383-396.
[25] S. Boufi, I. González, M. Delgado-aguilar, Q. Tarrès, M.À. Pèlach, Nanofibrillated cellulose as an additive in papermaking process : A review, Carbohydr. Polym. 154 (2016) 151–166.
[26] J. Brander, I. Thorn, (Eds.), Surface application of paper chemicals, Springer Science & Business Media, (2012).
[27] F.W. Brodin, Ø. Eriksen, Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties, Nordic Pulp Paper Res. J. 30(3) (2015) 443-451.
[28] R. Bardet, J. Bras, Cellulose nanofibers and their use in paper industry, In Handbook of Green Materials. (2014) 207-232.
[29] R. Hollertz, V.L. Durán, P.A. Larsson, L. Wågberg, Chemically modified cellulose micro-and nanofibrils as paper-strength additives, Cellulose. 24(9) (2017) 3883-3899.
[30] C.R. Daniels, C. Reznik, C.F. Landes, Dye diffusion at surfaces: Charge matters, Langmuir. 26(7) (2010) 4807-4812.
[31] M.A. Hubbe, J.A. Heitmann, Review of factors affecting the release of water from cellulosic fibers during paper manufacture, Bio Resource. 2(3) (2007) 500-533.
[32] J. Rantanen, K. Dimic-Misic, J. Kuusisto, T.C. Maloney, The effect of micro and nanofibrillated cellulose water uptake on high filler content composite paper properties and furnish dewatering, Cellulose. 22(6) (2015) 4003-4015.
[33] S. Ahola, M. Österberg, J. Laine, Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive, Cellulose. 15(2) (2008) 303-314.
[34] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, nanoscale. 3(1) (2011) 71-85.
[35] K. Syverud, G. Chinga-carrasco, J. Toledo, P.G. Toledo, A comparative study of Eucalyptus and Pinus radiata pulp fibers as raw materials for production of cellulose nanofibrils, Carbohydr. Polym. 84(3) (2011) 1033–1038.
[36] Ø. Eriksen, K. Syverud, Ø. Eriksen, The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper, Nordic Pulp Paper Res. J. 23(3) (2008) 299–304.
[37] S. Josset, P. Orsolini, G. Siqueira, A. Tejado, P. Tingaut, T. Zimmermann, Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process, Nordic Pulp Paper Res. J. 29(1) (2014) 167-175.
[38] H. Zheng, Production of fibrillated cellulose materials-Effects of pretreatments and refining strategy on pulp properties PhD Dessertation. (2014) 58.
[39] Y. Qing, R. Sabo, J.Y. Zhu, U. Agarwal, Z. Cai, Y. Wu, A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches, Carbohydr. Polym. 97(1) (2013). 226–234.
[40] K. Kekäläinen, H. Liimatainen, M. Illikainen, T.C. Maloney, J. Niinimäki, The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer, Cellulose. 21(3) (2014) 1163-1174.
[41] S.H. Osong, S. Norgren, P. Engstrand, Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking : A review, Cellulose. 23 (2016) 93-123.
[42] A. Blanco, M.C. Monte, C. Campano, A. Balea, N. Merayo, C. Negro, Nanocellulose for Industrial Use : Cellulose Nanofibers ( CNF ), Cellulose Nanocrystals ( CNC ), and Bacterial Cellulose ( BC ). Handbook of Nanomaterials for Industrial Applications, Elsevier Inc. (2018).
[43] L. Brinchi, F. Cotana, E. Fortunati, J.M. Kenny, Production of nanocrystalline cellulose from lignocellulosic biomass : Technology and applications, Carbohydr. Polym. 94(1) (2013) 154–169.
[44] D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature‐based materials, Angew. Chem I. Ed. 50(24) (2011) 5438-5466.