State of the Art, Challenges and Future Prospects in Magnetochemistry


State of the Art, Challenges and Future Prospects
in Magnetochemistry

Fulya Gulbagca, Burak Yildiz, Fatima Elmusa, Mohd Imran Ahamed, Fatih Sen

Nanoparticles are very suitable for many application areas such as catalysts, sensors, fuel cells etc. Magnetic nanoparticles have attracted a great deal of attention from researchers due to their applications in large number of areas. Recent studies have made significant progress in the use and development of new catalytic systems immobilized on magnetic nanoparticles. Their biocompatible catalytic activity and low toxicity indicate that they are suitable for use in many areas of nanotechnology. The main feature of magnetic nanoparticles is their size-specific properties. Additionally, particle size and specific surface area are other effective features of magnetic nanoparticles. They are very popular in life sciences and biomedical fields because of their advantages. In this study, we have gathered literature information against the problems that may occur in the application areas of magnetochemistry.

Magnetochemistry, Magnetic Nanoparticles, Biomedical Applications, Synthesis Strategies, Blood-Brain Barrier, Hyperthermia, Cancer

Published online 1/30/2020, 43 pages

Citation: Fulya Gulbagca, Burak Yildiz, Fatima Elmusa, Mohd Imran Ahamed, Fatih Sen, State of the Art, Challenges and Future Prospects
in Magnetochemistry, Materials Research Proceedings, Vol. 66, pp 130-172, 2020


Part of the book on Magnetochemistry

[1] I. Koh, L. Josephson, I. Koh, L. Josephson, Magnetic nanoparticle sensors, Sensors 9 (2009) 8130–8145.
[2] H. Vaghari, H. Jafarizadeh-Malmiri, M. Mohammadlou, A. Berenjian, N. Anarjan, N. Jafari, S. Nasiri, Application of magnetic nanoparticles in smart enzyme immobilization, Biotechnol. Lett. 38 (2016) 223–233.
[3] G.K. Kouassi, J. Irudayaraj, G. McCarty, Examination of Cholesterol oxidase attachment to magnetic nanoparticles, J. Nanobiotechnol. 3 (2005) 1.
[4] A.K. Johnson, A.M. Zawadzka, L.A. Deobald, R.L. Crawford, A.J. Paszczynski, Novel method for immobilization of enzymes to magnetic nanoparticles, J. Nanoparticle Res. 10 (2008) 1009–1025.
[5] N.A. Kalkan, S. Aksoy, E.A. Aksoy, N. Hasirci, Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase, J. Appl. Polym. Sci. 123 (2012) 707–716.
[6] M. Namdeo, S.K. Bajpai, Immobilization of a-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study, J. Molecular Catal. B, Enzymatic 59 (2009) 134-139.
[7] R. Konwarh, N. Karak, S.K. Rai, A.K. Mukherjee, Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase, Nanotechnology 20 (2009) 225107.
[8] S.A. Ansari, Q. Husain, S. Qayyum, A. Azam, Designing and surface modification of zinc oxide nanoparticles for biomedical applications, Food Chem. Toxicol. 49 (2011) 2107–15.
[9] S.H. Huang, M.H. Liao, D.H. Chen, Direct binding and characterization of lipase onto magnetic nanoparticles, Biotechnol. Prog. 19 (2003) 1095–1100.
[10] I. Cicha, S. Lyer, C. Janko, R.P. Friedrich, M. Pöttler, C. Alexiou, Magnetic nanoparticles for medical applications, Nanomedicine 12 (2017) 825–829.
[11] P. Tartaj, M.P. Morales, T. González-Carreño, S. Veintemillas-Verdaguer, C.J. Serna, Advances in magnetic nanoparticles for biotechnology applications, J. Magn. Magn. Mater. 290–291 (2005) 28–34.
[12] C.E. Sjøgren, K. Briley-Saebø, M. Hanson, C. Johansson, Magnetic characterization of iron oxides for magnetic resonance imaging, Magn. Reson. Med. 31 (1994) 268–272.
[13] D. Maity, D.C. Agrawal, Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media, J. Magn. Magn. Mater. 308 (2007) 46–55.
[14] H. Ding, V. Sagar, M. Agudelo, S. Pilakka-Kanthikeel, V.S.R. Atluri, A. Raymond, T. Samikkannu, M.P. Nair, Enhanced blood–brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation, Nanotechnology 25 (2014) 055101.
[15] Y. Huang, B. Zhang, S. Xie, B. Yang, Q. Xu, J. Tan, Superparamagnetic ıron oxide nanoparticles modified with tween 80 pass through the ıntact blood–brain barrier in rats under magnetic field, ACS Appl. Mater. Interfaces 8 (2016) 11336–11341.
[16] S.D. Kong, J. Lee, S. Ramachandran, B.P. Eliceiri, V.I. Shubayev, R. Lal, S. Jin, Magnetic targeting of nanoparticles across the intact blood–brain barrier, J. Control. Release 164 (2012) 49–57.
[17] E. Lueshen, I. Venugopal, T. Soni, A. Alaraj, A. Linninger, Implant-assisted ıntrathecal magnetic drug targeting to aid in therapeutic nanoparticle localization for potential treatment of central nervous system disorders, J. Biomed. Nanotechnol. 11 (2015) 253–261.
[18] I. Venugopal, N. Habib, A. Linninger, Intrathecal magnetic drug targeting for localized delivery of therapeutics in the CNS, Nanomedicine 12 (2017) 865–877.
[19] S. Pilakka-Kanthikeel, V.S.R. Atluri, V. Sagar, S.K. Saxena, M. Nair, Targeted brain derived neurotropic Factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: An In-Vitro Study, PLoS One 8 (2013) e62241.
[20] S.L. Raut, B. Kirthivasan, M.M. Bommana, E. Squillante, M. Sadoqi, The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye, Nanotechnology 21 (2010) 395102.
[21] Z. Sun, M. Worden, Y. Wroczynskyj, V. Yathindranath, J. van Lierop, T. Hegmann, D. Miller, Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier, Int. J. Nanomedicine 9 (2014) 3013-3026.
[22] L.B. Thomsen, T. Linemann, K.M. Pondman, J. Lichota, K.S. Kim, R.J. Pieters, G.M. Visser, T. Moos, Uptake and transport of superparamagnetic ıron oxide nanoparticles through human brain capillary endothelial cells, ACS Chem. Neurosci. 4 (2013) 1352–1360.
[23] M. Zhao, J. Hu, L. Zhang, L. Zhang, Y. Sun, N. Ma, X. Chen, Z. Gao, Study of amphotericin B magnetic liposomes for brain targeting, Int. J. Pharm. 475 (2014) 9–16.
[24] M. Zhao, J. Chang, X. Fu, C. Liang, S. Liang, R. Yan, A. Li, Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats, J. Drug Target. 20 (2012) 416–421.
[25] X. Zhao, T. Shang, X. Zhang, T. Ye, D. Wang, L. Rei, Passage of magnetic tat-conjugated Fe3O4@SiO2 nanoparticles across ın vitro blood-brain barrier, Nanoscale Res. Lett. 11 (2016) 451.
[26] M. Dan, Y. Bae, T.A. Pittman, R.A. Yokel, Alternating magnetic field-ınduced Hyperthermia ıncreases ıron oxide nanoparticle cell association/uptake and flux in blood–brain barrier models, Pharm. Res. 32 (2015) 1615–1625.
[27] S.N. Tabatabaei, H. Girouard, A.-S. Carret, S. Martel, Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery, J. Control. Release 206 (2015) 49–57.
[28] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, F. Sen, Composites of palladium–nickel alloy nanoparticles and graphene oxide for the knoevenagel condensation of aldehydes with malononitrile, ACS Omega 4 (2019) 6848–6853.
[29] R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, F. Şen, Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection, Mater. Sci. Eng. C. 99 (2019) 951–956.
[30] B. Sen, A. Şavk, F. Sen, Highly efficient monodisperse pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation, J. Colloid Interface Sci. 520 (2018) 112–118.
[31] E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, O.M. Kalfa, F. Şen, New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 Alcohol Oxidation and the room temperature dehydrocoupling of dimethylamine-borane, J. Clust. Sci. 27 (2016) 9–23.
[32] B. Şen, E.H. Akdere, A. Şavk, E. Gültekin, Ö. Paralı, H. Göksu, F. Şen, A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile, Appl. Catal. B Environ. 225 (2018) 148–153.
[33] İ. Esirden, E. Erken, M. Kaya, F. Sen, Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives, Catal. Sci. Technol. 5 (2015) 4452–4457.
[34] B. Çelik, Y. Yıldız, H. Sert, E. Erken, Y. Koşkun, F. Şen, Monodispersed palladium–cobalt alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for dimethylamine borane (DMAB) dehydrocoupling, RSC Adv. 6 (2016) 24097–24102.
[35] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995–4021.
[36] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Monodisperse palladium–nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine–borane, Int. J. Hydrogen Energy 42 (2017) 23276–23283.
[37] F. Sen, Y. Karatas, M. Gulcan, M. Zahmakiran, Amylamine stabilized platinum(0) nanoparticles: Active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. 4 (2014) 1526–1531.
[38] H. Pamuk, B. Aday, F. Şen, M. Kaya, Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives, RSC Adv. 5 (2015) 49295–49300.
[39] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, F. Sen, B. Şen, S. Kuzu, E. Demir, E. Yıldırır, F. Şen, B. Sen, S. Kuzu, E. Demir, E. Yıldırır, F. Sen, B. Şen, S. Kuzu, E. Demir, E. Yıldırır, F. Şen, Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel alloy nanoparticles assembled on PEDOT, Int. J. Hydrogen Energy 42 (2017) 23307–23314.
[40] Z. Ozturk, F. Sen, S. Sen, G. Gokagac, The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation, J. Mater. Sci. 47 (2012) 8134–8144.
[41] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, F. Sen, Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst, Catal. Sci. Technol. 6 (2016) 2318–2324.
[42] B. Şahin, E. Demir, A. Aygün, H. Gündüz, F. Şen, Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line, J. Biotechnol. 260 (2017) 79–83.
[43] B. Şahin, A. Aygün, H. Gündüz, K. Şahin, E. Demir, S. Akocak, F. Şen, Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line, Colloids Surf. B Biointerfaces 163 (2018) 119–124.
[44] B. Aday, Y. Yıldız, R. Ulus, S. Eris, F. Sen, M. Kaya, One-Pot, Efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide, New J. Chem. 40 (2016) 748–754.
[45] R. Ulus, Y. Yıldız, S. Eriş, B. Aday, F. Şen, M. Kaya, Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives, ChemistrySelect 1 (2016) 3861–3865.
[46] F. Şen, G. Gökaǧaç, Pt nanoparticles synthesized with new surfactants: Improvement in C1-C3 alcohol oxidation catalytic activity, J. Appl. Electrochem. 44 (2014) 199–207.
[47] B. Şen, A. Aygün, A. Şavk, S. Akocak, F. Şen, Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction, Int. J. Hydrogen Energy 43 (2018) 20183–20191.
[48] E. Demir, A. Savk, B. Sen, F. Sen, A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells, Nano-Structures and Nano-Objects 12 (2017) 41–45.
[49] G. Li, Q. Yi, X. Yang, Y. Chen, X. Zhou, G. Xie, Ni-Co-N doped honeycomb carbon nano-composites as cathodic catalysts of membrane-less direct alcohol fuel cell, Carbon 140 (2018) 557–568.
[50] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine−borane, Int. J. Hydrogen Energy 42 (2017) 23292–23298.
[51] S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target-specific nanoparticles: Theory to practice, Pharmacol. Rev. 53 (2001) 283–318.
[52] A. Curtis, C. Wilkinson, Nantotechniques and approaches in biotechnology, Trends Biotechnol. 19 (2001) 97–101.
[53] J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliv. Rev. 55 (2003) 329–47.
[54] Y. Cheng, M.E. Muroski, D.C.M.C. Petit, R. Mansell, T. Vemulkar, R.A. Morshed, Y. Han, I. V. Balyasnikova, C.M. Horbinski, X. Huang, L. Zhang, R.P. Cowburn, M.S. Lesniak, Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma, J. Control. Release 223 (2016) 75–84.
[55] T. Eslaminejad, S.N. Nematollahi-Mahani, M. Ansari, Glioblastoma targeted gene therapy based on pEGFP/p53-loaded superparamagnetic ıron oxide Nanoparticles, Curr. Gene Ther. 17 (2017) 59–69.
[56] B.G. Nair, Y. Nagaoka, H. Morimoto, Y. Yoshida, T. Maekawa, D. Sakthi Kumar, Aptamer conjugated magnetic nanoparticles as nanosurgeons, Nanotechnology 21 (2010) 455102.
[57] M. Zhao, C. Liang, A. Li, J. Chang, H. Wang, R. Yan, J. Zhang, J. Tai, Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts, Anticancer Res. 30 (2010) 2217–23.
[58] V. Atluri, R. Jayant, S. Pilakka-Kanthikeel, G. Garcia, S. Thangavel, A. Yndart, A. Kaushik, M. Nair, Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection, Int. J. Nanomedicine 11 (2016) 4287–4298.
[59] R. Jayant, V. Atluri, M. Agudelo, V. Sagar, A. Kaushik, M. Nair, Sustained-release nanoART formulation for the treatment of neuroAIDS, Int. J. Nanomedicine 10 (2015) 1077.
[60] M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, S. Khizroev, Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers, Nat. Commun. 4 (2013) 1707.
[61] M. Rodriguez, A. Kaushik, J. Lapierre, S.M. Dever, N. El-Hage, M. Nair, Electro-magnetic nano-particle bound Beclin1 siRNA crosses the blood–brain barrier to attenuate the ınflammatory effects of HIV-1 ınfection in vitro, J. Neuroimmune Pharmacol. 12 (2017) 120–132.
[62] V. Sagar, S. Pilakka-Kanthikeel, V.S.R. Atluri, H. Ding, A.Y. Arias, R.D. Jayant, A. Kaushik, M. Nair, Therapeutical neurotargeting via magnetic nanocarrier: Implications to opiate-ınduced neuropathogenesis and neuroAIDS, J. Biomed. Nanotechnol. 11 (2015) 1722–33.
[63] R. Chen, G. Romero, M.G. Christiansen, A. Mohr, P. Anikeeva, Wireless magnetothermal deep brain stimulation, Science 347 (2015) 1477–1480.
[64] R. Guduru, P. Liang, J. Hong, A. Rodzinski, A. Hadjikhani, J. Horstmyer, E. Levister, S. Khizroev, Magnetoelectric ‘spin’ on stimulating the brain, Nanomedicine 10 (2015) 2051–2061.
[65] R. Munshi, S.M. Qadri, Q. Zhang, I. Castellanos Rubio, P. del Pino, A. Pralle, Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice, Elife 6 (2017).
[66] S.A. Stanley, L. Kelly, K.N. Latcha, S.F. Schmidt, X. Yu, A.R. Nectow, J. Sauer, J.P. Dyke, J.S. Dordick, J.M. Friedman, Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism, Nature 531 (2016) 647–650.
[67] A. Tay, D. Di Carlo, Magnetic Nanoparticle-Based Mechanical Stimulation for Restoration of Mechano-Sensitive Ion Channel Equilibrium in Neural Networks, Nano Lett. 17 (2017) 886–892.
[68] A. Tay, A. Kunze, C. Murray, D. Di Carlo, Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces, ACS Nano 10 (2016) 2331–2341.
[69] M. Song, Y.-J. Kim, Y.-H. Kim, J. Roh, E.-C. Kim, H.J. Lee, S.U. Kim, B.-W. Yoon, Long-term effects of magnetically targeted ferumoxide-labeled human neural stem cells in focal cerebral ıschemia, Cell Transplant 24 (2015) 183–190.
[70] M. Song, Y.-J. Kim, Y. Kim, J. Roh, S.U. Kim, B.-W. Yoon, Using a Neodymium magnet to target delivery of ferumoxide-labeled human neural stem cells in a rat model of focal cerebral ıschemia, Hum. Gene Ther. 21 (2010) 603–610.
[71] F.U. Amin, A.K. Hoshiar, T.D. Do, Y. Noh, S.A. Shah, M.S. Khan, J. Yoon, M.O. Kim, Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease, Nanoscale 9 (2017) 10619–10632.
[72] T.D. Do, F. Ul Amin, Y. Noh, M.O. Kim, J. Yoon, Guidance of magnetic nanocontainers for treating alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator, J. Biomed. Nanotechnol. 12 (2016) 569–74.
[73] S. Niu, L.-K. Zhang, L. Zhang, S. Zhuang, X. Zhan, W.-Y. Chen, S. Du, L. Yin, R. You, C.-H. Li, Y.-Q. Guan, Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model, Theranostics 7 (2017) 344–356.
[74] P. Umarao, S. Bose, S. Bhattacharyya, A. Kumar, S. Jain, Neuroprotective potential of superparamagnetic ıron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s disease, J. Nanosci. Nanotechnol. 16 (2016) 261–9.
[75] P. Tartaj, M. a del P. Morales, S. Veintemillas-Verdaguer, T. Gonz lez-Carre o, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D. Appl. Phys. 36 (2003) R182–R197.
[76] C. Scherer, A.M. Figueiredo Neto, Ferrofluids: Properties and applications, Brazilian J. Phys. 35 (2005) 718–727.
[77] N. Yanase, H. Noguchi, H. Asakura, T. Suzuta, Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid, J. Appl. Polym. Sci. 50 (1993) 765–776.
[78] V. Veiga, D.H. Ryan, E. Sourty, F. Llanes, R.H. Marchessault, Formation and characterization of superparamagnetic cross-linked high amylose starch, Carbohydr. Polym. 42 (2000) 353–357.
[79] M. Muthana, S.D. Scott, N. Farrow, F. Morrow, C. Murdoch, S. Grubb, N. Brown, J. Dobson, C.E. Lewis, A novel magnetic approach to enhance the efficacy of cell-based gene therapies, Gene Ther. 15 (2008) 902–910.
[80] D. Müller-Schulte, H. Brunner, Novel magnetic microspheres on the basis of poly(vinyl alcohol) as affinity medium for quantitative detection of glycated haemoglobin, J. Chromatogr. A. 711 (1995) 53–60.
[81] M. Safarikova, I. Safarik, The application of magnetic techniques in biosciences, Magn. Electr. Sep. 10 (2001) 223–252.
[82] S. Berensmeier, Magnetic particles for the separation and purification of nucleic acids, Appl. Microbiol. Biotechnol. 73 (2006) 495–504.
[83] A. Jordan, R. Scholz, P. Wust, H. Fähling, Roland Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater. 201 (1999) 413–419.
[84] I. Hilger, W.A. Kaiser, Iron oxide-based nanostructures for MRI and magnetic hyperthermia, Nanomedicine 7 (2012) 1443–1459.
[85] I. Hilger, R. Hiergeist, W.A. Winnefeld, K. Schubert, H. Kaiser, Thermal ablation of tumors using magnetic nanoparticles: An ın vivo feasibility study,  Investigative Radiology 10 (2002) 580–586.
[86] A. Ito, K. Tanaka, K. Kondo, M. Shinkai, H. Honda, K. Matsumoto, T. Saida, T. Kobayashi, Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma, Cancer Sci. 94 (2003) 308–313.
[87] K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, A. Jordan, Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme, J. Neurooncol. 81 (2007) 53–60.
[88] S.J. DeNardo, G.L. DeNardo, A. Natarajan, L.A. Miers, A.R. Foreman, C. Gruettner, G.N. Adamson, R. Ivkov, Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice, J. Nucl. Med. 48 (2007) 437–44.
[89] T. Kikumori, T. Kobayashi, M. Sawaki, T. Imai, Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes, Breast Cancer Res. Treat. 113 (2009) 435–441.
[90] C.L. Dennis, A.J. Jackson, J.A. Borchers, P.J. Hoopes, R. Strawbridge, A.R. Foreman, J. van Lierop, C. Grüttner, R. Ivkov, Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology 20 (2009) 395103.
[91] P.J. Hoopes, J.A. Tate, J.A. Ogden, R.R. Strawbridge, S.N. Fiering, A.A. Petryk, S.M. Cassim, A.J. Giustini, E. Demidenko, R. Ivkov, S. Barry, P. Chinn, A. Foreman, Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells, in: T.P. Ryan (Ed.), Proc. SPIE–the Int. Soc. Opt. Eng., 2009: p. 71810P.
[92] D.-H. Chen, M.-H. Liao, Preparation and characterization of YADH-bound magnetic nanoparticles, J. Molecular Catal. B, Enzymatic 16 (2002) 283-291.
[93] L.M. Rossi, A.D. Quach, Z. Rosenzweig, Glucose oxidase?magnetite nanoparticle bioconjugate for glucose sensing, Anal. Bioanal. Chem. 380 (2004) 606–613.
[94] M. Bilal, Y. Zhao, T. Rasheed, H.M.N. Iqbal, Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review, Int. J. Biol. Macromol. 120 (2018) 2530–2544.
[95] L. Cao, Carrier‐bound Immobilized Enzymes, Wiley, 2005.
[96] U.T. Bornscheuer, Immobilizing Enzymes: How to create more suitable biocatalysts, Angew. Chemie Int. Ed. 42 (2003) 3336–3337.
[97] R.V. Mehta, Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology, Mater. Sci. Eng. C. 79 (2017) 901–916.
[98] X. Li, J. Wei, K.E. Aifantis, Y. Fan, Q. Feng, F.-Z. Cui, F. Watari, Current investigations into magnetic nanoparticles for biomedical applications, J. Biomed. Mater. Res. Part A. 104 (2016) 1285–1296.
[99] K. Khoshnevisan, F. Vakhshiteh, M. Barkhi, H. Baharifar, E. Poor-Akbar, N. Zari, H. Stamatis, A.-K. Bordbar, Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances, Mol. Catal. 442 (2017) 66–73.
[100] T. Kang, F. Li, S. Baik, W. Shao, D. Ling, T. Hyeon, Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy, Biomaterials 136 (2017) 98–114.
[101] L. Maldonado-Camargo, M. Unni, C. Rinaldi, Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications, in: Methods Mol. Biol., 2017: pp. 47–71.
[102] K.W. Huang, J.J. Chieh, C.K. Yeh, S.H. Liao, Y.Y. Lee, P.-Y. Hsiao, W.C. Wei, H.C. Yang, H.E. Horng, Ultrasound-ınduced magnetic ımaging of tumors targeted by biofunctional magnetic nanoparticles, ACS Nano 11 (2017) 3030–3037.
[103] A. Rafati, A. Zarrabi, P. Gill, Fabrication of DNA nanotubes with an array of exterior magnetic nanoparticles, Mater. Sci. Eng. C. 79 (2017) 216–220.
[104] P. Das, M. Colombo, D. Prosperi, Recent advances in magnetic fluid hyperthermia for cancer therapy, Colloids Surf. B Biointerfaces. 174 (2019) 42–55.
[105] Y. Huang, K. Mao, B. Zhang, Y. Zhao, Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics, Mater. Sci. Eng. C. 70 (2017) 763–771.
[106] A. Zarrin, S. Sadighian, K. Rostamizadeh, O. Firuzi, M. Hamidi, S. Mohammadi-Samani, R. Miri, Design, preparation, and in vitro characterization of a trimodally-targeted nanomagnetic onco-theranostic system for cancer diagnosis and therapy, Int. J. Pharm. 500 (2016) 62–76.
[107] R.-M. Yang, C. Fu, J. Fang, X. Xu, X. Wei, W. Tang, X. Jiang, L. Zhang, Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy, Int. J. Nanomedicine 12 (2016) 197–206.
[108] D. Vyas, N. Lopez-Hisijos, S. Gandhi, M. El-Dakdouki, M.D. Basson, M.F. Walsh, X. Huang, A.K. Vyas, L.S. Chaturvedi, Doxorubicin-hyaluronan conjugated super-paramagnetic ıron oxide nanoparticles (DOX-HA-SPION) Enhanced cytoplasmic uptake of doxorubicin and modulated apoptosis, ıl-6 release and nf-kappab activity in human MDA-MB-231 breast cancer cells, J. Nanosci. Nanotechnol. 15 (2015) 6413–6422.
[109] M. Khafaji, M. Vossoughi, M.R. Hormozi-Nezhad, R. Dinarvand, F. Börrnert, A. Irajizad, A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging, Sci. Rep. 6 (2016) 27847.
[110] H.L. Xu, K.L. Mao, Y.P. Huang, J.J. Yang, J. Xu, P.-P. Chen, Z.L. Fan, S. Zou, Z.-Z. Gao, J.-Y. Yin, J. Xiao, C.-T. Lu, B.-L. Zhang, Y.-Z. Zhao, Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects, Nanoscale 8 (2016) 14222–14236.
[111] Z.R. Stephen, C.J. Dayringer, J.J. Lim, R.A. Revia, M. V. Halbert, M. Jeon, A. Bakthavatsalam, R.G. Ellenbogen, M. Zhang, Approach to rapid synthesis and functionalization of ıron oxide nanoparticles for high gene transfection, ACS Appl. Mater. Interfaces 8 (2016) 6320–6328.
[112] K. Yu, M. Lin, H.-J. Lee, K.-S. Tae, B.-S. Kang, J. Lee, N. Lee, Y. Jeong, S.-Y. Han, D. Kim, K.S. Yu, M.M. Lin, H.-J. Lee, K.-S. Tae, B.-S. Kang, J.H. Lee, N.S. Lee, Y.G. Jeong, S.-Y. Han, D.K. Kim, Receptor-Meditated Endocytosis by Hyaluronic Acid@Superparamagnetic Nanovetor for Targeting of CD44-Overexpressing Tumor Cells, Nanomaterials 6 (2016) 149.
[113] M.-K. Yoo, I.-K. Park, H.-T. Lim, S.-J. Lee, H.-L. Jiang, Y.-K. Kim, Y.-J. Choi, M.-H. Cho, C.-S. Cho, Folate–PEG–superparamagnetic iron oxide nanoparticles for lung cancer imaging, Acta Biomater. 8 (2012) 3005–3013.
[114] A. Akbarzadeh, M. Samiei, S.W. Joo, M. Anzaby, Y. Hanifehpour, H.T. Nasrabadi, S. Davaran, Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line, J. Nanobiotechnology 10 (2012) 46.
[115] L. Mühleisen, M. Alev, H. Unterweger, D. Subatzus, M. Pöttler, R. Friedrich, C. Alexiou, C. Janko, L. Mühleisen, M. Alev, H. Unterweger, D. Subatzus, M. Pöttler, R.P. Friedrich, C. Alexiou, C. Janko, Analysis of hypericin-mediated effects and ımplications for targeted photodynamic therapy, Int. J. Mol. Sci. 18 (2017) 1388.
[116] H. Unterweger, D. Subatzus, R. Tietze, C. Janko, M. Poettler, A. Stiegelschmitt, M. Schuster, C. Maake, A. Boccaccini, C. Alexiou, Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy, Int. J. Nanomedicine. 10 (2015) 6985.
[117] D. Luong, S. Sau, P. Kesharwani, A.K. Iyer, Polyvalent folate-dendrimer-coated ıron oxide theranostic nanoparticles for simultaneous magnetic resonance ımaging and precise cancer cell targeting, Biomacromolecules 18 (2017) 1197–1209.
[118] J. Mosafer, K. Abnous, M. Tafaghodi, A. Mokhtarzadeh, M. Ramezani, In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy, Eur. J. Pharm. Biopharm. 113 (2017) 60–74.
[119] M. Azhdarzadeh, F. Atyabi, A.A. Saei, B.S. Varnamkhasti, Y. Omidi, M. Fateh, M. Ghavami, S. Shanehsazzadeh, R. Dinarvand, Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer, Colloids Surf. B Biointerfaces. 143 (2016) 224–232.
[120] J.H. Maeng, D.-H. Lee, K.H. Jung, Y.-H. Bae, I.-S. Park, S. Jeong, Y.-S. Jeon, C.-K. Shim, W. Kim, J. Kim, J. Lee, Y.-M. Lee, J.-H. Kim, W.-H. Kim, S.-S. Hong, Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer, Biomaterials 31 (2010) 4995–5006.
[121] U.M. Mahajan, S. Teller, M. Sendler, R. Palankar, C. van den Brandt, T. Schwaiger, J.-P. Kühn, S. Ribback, G. Glöckl, M. Evert, W. Weitschies, N. Hosten, F. Dombrowski, M. Delcea, F.U. Weiss, M.M. Lerch, J. Mayerle, Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer, Gut. 65 (2016) 1838–1849.
[122] L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology 30 (2017) 1–14.
[123] L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, Organic phase syntheses of magnetic nanoparticles and their applications, Chem. Rev. 116 (2016) 10473–10512.
[124] G.C. Papaefthymiou, Nanoparticle magnetism, Nano Today 4 (2009) 438–447.
[125] A.-H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: Synthesis, Protection, functionalization, and application, Angew. Chemie Int. Ed. 46 (2007) 1222–1244.
[126] Z. Hedayatnasab, F. Abnisa, W. Mohd Ashri Wan Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application, Mater. Design 123 (2017) 174-196.
[127] A.K. Singh, O.N. Srivastava, K. Singh, Shape and size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine, Nanoscale Res. Lett. 12 (2017) 298.
[128] D.P. Joshi, G. Pant, N. Arora, S. Nainwal, Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles, Heliyon 3 (2017) e00253.
[129] Y. Jun, J. Seo, J. Cheon, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences, Acc. Chem. Res. 41 (2008) 179–189.
[130] J.-H. Park, S.-H. Shin, S.-H. Kim, J.-K. Park, J.-W. Lee, J.-H. Shin, J.-H. Park, S.-W. Kim, H.-J. Choi, K.-S. Lee, J.-C. Ro, C. Park, S.-J. Suh, Effect of Synthesis Time and Composition on Magnetic Properties of FeCo Nanoparticles by Polyol Method, J. Nanosci. Nanotechnol. 18 (2018) 7115–7119.
[131] N. Manuchehrabadi, Z. Gao, J. Zhang, H.L. Ring, Q. Shao, F. Liu, M. McDermott, A. Fok, Y. Rabin, K.G.M. Brockbank, M. Garwood, C.L. Haynes, J.C. Bischof, Improved tissue cryopreservation using inductive heating of magnetic nanoparticles, Sci. Transl. Med. 9 (2017) eaah4586.
[132] M. Virumbrales-Del Olmo, A. Delgado-Cabello, A. Andrada-Chacón, J. Sánchez-Benítez, E. Urones-Garrote, V. Blanco-Gutiérrez, M.J. Torralvo, R. Sáez-Puche, Effect of composition and coating on the interparticle interactions and magnetic hardness of MFe2O4 (M = Fe, Co, Zn) nanoparticles, Phys. Chem. Chem. Phys. 19 (2017) 8363–8372.
[133] S. Khoee, Y. Bagheri, A. Hashemi, Composition controlled synthesis of PCL-PEG Janus nanoparticles: magnetite nanoparticles prepared from one-pot photo-click reaction, Nanoscale 7 (2015) 4134–48.
[134] J. Nowak, F. Wiekhorst, L. Trahms, S. Odenbach, The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids, J. Phys. Condens. Matter. 26 (2014) 176004.
[135] L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications, Chem. Rev. 112 (2012) 5818–5878.
[136] J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang, M. Sun, Application of ıron magnetic nanoparticles in protein ımmobilization, Molecules 19 (2014) 11465–11486.
[137] D. Ni, W. Bu, E.B. Ehlerding, W. Cai, J. Shi, Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents, Chem. Soc. Rev. 46 (2017) 7438–7468.
[138] W. Wu, C.Z. Jiang, V.A.L. Roy, Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications, Nanoscale 8 (2016) 19421–19474.
[139] L. Rao, B. Cai, L.-L. Bu, Q.-Q. Liao, S.-S. Guo, X.-Z. Zhao, W.-F. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced ımaging-guided cancer therapy, ACS Nano 11 (2017) 3496–3505.
[140] Y. Xu, J. Sherwood, Y. Qin, R.A. Holler, Y. Bao, A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes, Nanoscale 7 (2015) 12641–12649.
[141] A. Sathya, P. Guardia, R. Brescia, N. Silvestri, G. Pugliese, S. Nitti, L. Manna, T. Pellegrino, Co x Fe3– xO4 Nanocubes for theranostic applications: effect of cobalt content and particle size, Chem. Mater. 28 (2016) 1769–1780.
[142] A. López-Ortega, A.G. Roca, P. Torruella, M. Petrecca, S. Estradé, F. Peiró, V. Puntes, J. Nogués, Galvanic replacement onto complex metal-oxide nanoparticles: Impact of water or other oxidizers in the formation of either fully dense onion-like or multicomponent hollow MnOx/FeOx structures, Chem. Mater. 28 (2016) 8025–8031.
[143] M.F. Casula, E. Conca, I. Bakaimi, A. Sathya, M.E. Materia, A. Casu, A. Falqui, E. Sogne, T. Pellegrino, A.G. Kanaras, Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia, Phys. Chem. Chem. Phys. 18 (2016) 16848–16855.
[144] S. Yang, J.-T. Jiang, C.-Y. Xu, Y. Wang, Y.-Y. Xu, L. Cao, L. Zhen, Synthesis of Zn(II)-Doped Magnetite Leaf-Like Nanorings for Efficient Electromagnetic Wave Absorption, Sci. Rep. 7 (2017) 45480.
[145] M. Jang, G. Cao, Deposition of magnetic nanoparticles suspended in the gas phase on a specific target area, Environ. Sci. Technol. 40 (2006) 6730–7
[146] S.H. Baker, M.S. Kurt, M. Roy, M.R. Lees, C. Binns, Structure and magnetism in Cr-embedded Co nanoparticles, J. Phys. Condens. Matter. 28 (2016) 046003.
[147] S. Bartling, C. Yin, I. Barke, K. Oldenburg, H. Hartmann, V. von Oeynhausen, M.-M. Pohl, K. Houben, E.C. Tyo, S. Seifert, P. Lievens, K.-H. Meiwes-Broer, S. Vajda, Pronounced size dependence in structure and morphology of gas-phase produced, partially oxidized cobalt nanoparticles under catalytic reaction conditions, ACS Nano 9 (2015) 5984–5998.
[148] S. Majidi, F. Zeinali Sehrig, S.M. Farkhani, M. Soleymani Goloujeh, A. Akbarzadeh, Current methods for synthesis of magnetic nanoparticles, Artif. Cells, Nanomedicine, Biotechnol. 44 (2014) 1–13.
[149] S. Jeon, R. Subbiah, T. Bonaedy, S. Van, K. Park, K. Yun, Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields, J. Cell. Physiol. 233 (2018) 1168–1178.
[150] M. Ul-Islam, M.W. Ullah, S. Khan, S. Manan, W.A. Khattak, W. Ahmad, N. Shah, J.K. Park, Current advancements of magnetic nanoparticles in adsorption and degradation of organic pollutants, Environ. Sci. Pollut. Res. 24 (2017) 12713–12722.
[151] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic ıron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064–2110.
[152] T.K. Indira, P.K. Lakshmi, Magnetic nanoparticles-A review, Int. J. Pharmaceutical Nanotechnol. 3 (2010) 1035-1042.
[153] R. López, M. Pineda, G. Hurtado, R. León, S. Fernández, H. Saade, D. Bueno, Chitosan-Coated Magnetic Nanoparticles Prepared in One Step by Reverse Microemulsion Precipitation, Int. J. Mol. Sci. 14 (2013) 19636–19650.
[154] M. Pineda, S. Torres, L. López, F. Enríquez-Medrano, R. de León, S. Fernández, H. Saade, R. López, Chitosan-coated magnetic nanoparticles prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion, Molecules 19 (2014) 9273–9287.
[155] C. Okoli, M. Sanchez-Dominguez, M. Boutonnet, S. Järås, C. Civera, C. Solans, G.R. Kuttuva, Comparison and functionalization study of microemulsion-prepared magnetic ıron oxide nanoparticles, Langmuir 28 (2012) 8479–8485.
[156] Y. Liu, X. Shen, Synthesis and application of surface-modified NiFe nanoparticles as a new magnetic nano adsorbent for the removal of nickel ions from aqueous solution, Water Sci. Technol. 76 (2017) 2851–2857.
[157] J. Li, S. Wang, X. Shi, M. Shen, Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy, Adv. Colloid Interface Sci. 249 (2017) 374–385.
[158] E. Kılınç, Fullerene C60 functionalized γ-Fe2O3 magnetic nanoparticle: Synthesis, characterization, and biomedical applications, Artif. Cells, Nanomedicine, Biotechnol. 44 (2014) 298–304.
[159] J. Sánchez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, R.A. Jasso-Terán, A. Zugasti-Cruz, Bioactive magnetic nanoparticles of Fe–Ga synthesized by sol–gel for their potential use in hyperthermia treatment, J. Mater. Sci. Mater. Med. 25 (2014) 2237–2242.
[160] E. Ozyilmaz, S. Sayin, M. Arslan, M. Yilmaz, Improving catalytic hydrolysis reaction efficiency of sol–gel-encapsulated Candida rugosa lipase with magnetic β-cyclodextrin nanoparticles, Colloids Surf. B Biointerfaces. 113 (2014) 182–189.
[161] W. Wang, Y. Zhang, Q. Yang, M. Sun, X. Fei, Y. Song, Y. Zhang, Y. Li, Fluorescent and colorimetric magnetic microspheres as nanosensors for Hg2+ in aqueous solution prepared by a sol–gel grafting reaction and host–guest interaction, Nanoscale. 5 (2013) 4958.
[162] G. Hemery, A.C. Keyes, E. Garaio, I. Rodrigo, J.A. Garcia, F. Plazaola, E. Garanger, O. Sandre, Tuning sizes, morphologies, and magnetic properties of monocore versus multicore ıron oxide nanoparticles through the controlled addition of water in the polyol synthesis, Inorg. Chem. 56 (2017) 8232–8243.
[163] G. Zhang, Q. Zhang, T. Cheng, X. Zhan, F. Chen, Polyols-ınfused slippery surfaces based on magnetic Fe3O4-functionalized polymer hybrids for enhanced multifunctional anti-ıcing and deicing properties, Langmuir 34 (2018) 4052–4058.
[164] G. Martínez, A. Malumbres, R. Mallada, J.L. Hueso, S. Irusta, O. Bomatí-Miguel, J. Santamaría, Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis, Nanotechnology 23 (2012) 425605.
[165] R. Hachani, M. Lowdell, M. Birchall, A. Hervault, D. Mertz, S. Begin-Colin, N.T.K. Thanh, Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents, Nanoscale 8 (2016) 3278–87.
[166] A. Mardinoglu, P.J. Cregg, Modelling the effect of SPION size in a stent assisted magnetic drug targeting system with ınterparticle ınteractions, Sci. World J. 2015 (2015) 1–7.
[167] M. Jiao, J. Zeng, L. Jing, C. Liu, M. Gao, Flow synthesis of biocompatible Fe3O4 nanoparticles: Insight into the effects of residence time, fluid velocity, and tube reactor dimension on particle size distribution, Chem. Mater. 27 (2015) 1299–1305.
[168] C. Pascal, and J. L. Pascal, F. Favier, M.L.E. Moubtassim, C. Payen, Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size, morphology, microstructure, and magnetic behavior, Chem. Mater. 11 (1998) 141-147.
[169] M.S. Balula, J.A. Gamelas, H.M. Carapuça, A.M.V. Cavaleiro, W. Schlindwein, Electrochemical behaviour of first row transition metal substituted polyoxotungstates: A comparative study in acetonitrile, Eur. J. Inorg. Chem. 2004 (2004) 619–628.
[170] E. Mazarío, P. Herrasti, M.P. Morales, N. Menéndez, Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method, Nanotechnology 23 (2012) 355708.
[171] J.G. Ovejero, A. Mayoral, M. Cañete, M. García, A. Hernando, P. Herrasti, Electrochemical synthesis and magnetic properties of MFe2O4 (M = Fe, Mn, Co, Ni) nanoparticles for potential biomedical applications, J. Nanosci. Nanotechnol. 19 (2019) 2008–2015.
[172] D.-H. Kim, J.-S. Park, M.-S. Kang, Continuous Preparation of Water-Dispersible Magnetite Nanoparticles by Electrochemical Synthesis, J. Nanosci. Nanotechnol. 18 (2018) 5721–5725.
[173] J. Pinkas, V. Reichlova, R. Zboril, Z. Moravec, P. Bezdicka, J. Matejkova, Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3, Ultrason. Sonochem. 15 (2008) 257–264.
[174] E. Tombácz, R. Turcu, V. Socoliuc, L. Vékás, Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems, Biochem. Biophys. Res. Commun. 468 (2015) 442–453.
[175] R. Cassano, S. Mellace, M. Marrelli, F. Conforti, S. Trombino, α-Tocopheryl linolenate solid lipid nanoparticles for the encapsulation, protection, and release of the omega-3 polyunsaturated fatty acid: in vitro anti-melanoma activity evaluation, Colloids Surf. B Biointerfaces 151 (2017) 128–133.