Separators for Supercapacitors


Separators for Supercapacitors

A. Amin Izazi, Chin-Wei Lai, Joon-Ching Juan, Siew-Moi Phang, Guan-Tin Pan, Thomas C-K. Yang

Separators being one of the important components in a supercapacitor are gaining interest and demand for the development of efficient, reliable, flexible and environmentally friendly supercapacitors. Many studies search of suitable materials for a separator that possess high porosity, high electrolyte wettability, high ionic conductivity, high mechanical stability and a lower price. This chapter addresses recent advances and summarizes the main characteristics of separators as used in emerging supercapacitors. Highlighted are the challenges related with the current state-of-the-art materials and methods that should be considered for future supercapacitor development with emphasize on the separator.

Supercapacitor, Separator, Membrane, Electrode Contact, Wettability

Published online 11/5/2019, 26 pages

Citation: A. Amin Izazi, Chin-Wei Lai, Joon-Ching Juan, Siew-Moi Phang, Guan-Tin Pan, Thomas C-K. Yang, Separators for Supercapacitors, Materials Research Foundations, Vol. 61, pp 95-120, 2019


Part of the book on Supercapacitor Technology

[1] C.M. Costa, M.M. Silva, S. Lanceros-Mendez, Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications, RSC Adv. 3 (2013) 11404-11417.
[2] L. Zhang, Z. Liu, G. Cui, L. Chen, Biomass-derived materials for electrochemical energy storages, Prog. Polym. Sci. 43 (2015) 136-164.
[3] B. Ding, J. Yu, Electrospun Nanofibers for Energy and Environmental Applications, Springer Berlin Heidelberg 2014.
[4] A. Balakrishnan, K.R.V. Subramanian, Nanostructured Ceramic Oxides for Supercapacitor Applications, Taylor & Francis 2014.
[5] M.F. Ahmer, A.M. Asiri, S. Zaidi, Electrochemical Capacitors: Theory, Materials and Applications, Materials Research Forum LLC 2018.
[6] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sust. Energy Rev. 58 (2016) 1189-1206.
[7] B. Szubzda, A. Szmaja, M. Ozimek, S. Mazurkiewicz, Polymer membranes as separators for supercapacitors, Appl. Phys. A Mater. Sci. Process. 117 (2014) 1801-1809.
[8] N.S.M. Nor, M. Deraman, R. Omar, E. Taer, Awitdrus, R. Farma, N.H. Basri, B.N.M. Dolah, Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches C3-AIP Conference Proceedings, 1586 (2014) 68-73.
[9] M.M. Nasef, S.A. Gürsel, D. Karabelli, O. Güven, Radiation-grafted materials for energy conversion and energy storage applications, Prog. Polym. Sci. 63 (2016) 1-41.
[10] K.I. Ozoemena, S. Chen, Nanomaterials in Advanced Batteries and Supercapacitors, Springer International Publishing 2016.
[11] M. Lu, F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley 2013.
[12] P.F. Huo, S.L. Zhang, X.R. Zhang, Z. Geng, J.S. Luan, G.B. Wang, Quaternary ammonium functionalized poly(aryl ether sulfone)s as separators for supercapacitors based on activated carbon electrodes, J. Membrane Sci. 475 (2015) 562-570.
[13] A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sust. Energy Rev. 101 (2019) 123-145.
[14] A. Laforgue, L. Robitaille, Electrochemical testing of ultraporous membranes as separators in mild aqueous supercapacitors, J. Electrochem. Soc. 159 (2012) A929-A936.
[15] A. Jabbarnia, W.S. Khan, A. Ghazinezami, R. Asmatulu, Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications, J.Appl. Polym. Sci. 133 (2016) 43707.
[16] Z.B. Ahmad Noorden, S. Sugawara, S. Matsumoto, Glass wool material as alternative separator for higher rating electric double layer capacitor, ECS Transactions 53 (2013) 43-51.
[17] Z.A. Noorden, S. Sugawara, S. Matsumoto, Noncorrosive separator materials for electric double layer capacitor, IEEJ T. Electr. Electr. 9 (2014) 235-240.
[18] Q. Yao, H. Wang, C. Wang, C. Jin, Q. Sun, One step construction of nitrogen–carbon derived from bradyrhizobium japonicum for supercapacitor applications with a soybean leaf as a separator, ACS Sust. Chem. Eng. 6 (2018) 4695-4704.
[19] H.J. Yu, Q.Q. Tang, J.H. Wu, Y.Z. Lin, L.Q. Fan, M.L. Huang, J.M. Lin, Y. Li, F.D. Yu, Using eggshell membrane as a separator in supercapacitor, J. Power Sources 206 (2012) 463-468.
[20] K. Liivand, T. Thomberg, A. Jänes, E. Lust, Separator materials influence on supercapacitors performance in viscous electrolytes, ECS Trans. 64 (2015) 41-49.
[21] B. Qin, Y. Han, Y. Ren, D. Sui, Y. Zhou, M. Zhang, Z. Sun, Y. Ma, Y. Chen, A Ceramic-based separator for high-temperature supercapacitors, Energy Technol. 6 (2018) 306-311.
[22] X. Wang, D. Kong, Y. Zhang, B. Wang, X. Li, T. Qiu, Q. Song, J. Ning, Y. Song, L. Zhi, All-biomaterial supercapacitor derived from bacterial cellulose, Nanoscale 8 (2016) 9146-9150.
[23] Q. Xie, X. Huang, Y. Zhang, S. Wu, P. Zhao, High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly(vinylidene fluoride) porous separator, Appl. Surf. Sci. 443 (2018) 412-420.
[24] S. Tuukkanen, S. Lehtimäki, F. Jahangir, A.-P. Eskelinen, D. Lupo, S. Franssila, Printable and disposable supercapacitor from nanocellulose and carbon nanotubes, Electronics System-Integration Technology Conference (ESTC), 2014, IEEE, 2014, pp. 1-6.
[25] N.S.M. Nor, M. Deraman, R. Omar, E. Taer, Awitdrus, R. Farma, N.H. Basri, B.N.M. Dolah, Nanoporous Separators for Supercapacitor Using Activated Carbon Monolith Electrode from Oil Palm Empty Fruit Bunches, in: H. Setyawan, Widiyastuti, S. Machmudah (Eds.) 5th Nanoscience and Nanotechnology Symposium2014, pp. 68-73.
[26] K. Tõnurist, T. Thomberg, A. Jänes, T. Romann, V. Sammelselg, E. Lust, Influence of separator properties on electrochemical performance of electrical double-layer capacitors, J. Electroanal. Chem. 689 (2013) 8-20.
[27] D. Karabelli, J.C. Lepretre, F. Alloin, J.Y. Sanchez, Poly(vinylidene fluoride)-based macroporous separators for supercapacitors, Electrochim. Acta 57 (2011) 98-103.
[28] C.Y. Bon, L. Mohammed, S. Kim, M. Manasi, P. Isheunesu, K.S. Lee, J.M. Ko, Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications, J. Ind. Eng. Chem. 68 (2018) 173-179.
[29] P. Sivaraman, V. Hande, V. Mishra, C.S. Rao, A. Samui, All-solid supercapacitor based on polyaniline and sulfonated poly (ether ether ketone), J. Power Sources 124 (2003) 351-354.
[30] I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Conducting polymer-based flexible supercapacitor, Energy Sci. Eng. 3 (2015) 2-26.
[31] X. Lv, G. Li, D. Li, F. Huang, W. Liu, Q. Wei, A new method to prepare no-binder, integral electrodes-separator, asymmetric all-solid-state flexible supercapacitor derived from bacterial cellulose, J. Phys. Chem. Solids 110 (2017) 202-210.
[32] I. Stepniak, A. Ciszewski, Grafting effect on the wetting and electrochemical performance of carbon cloth electrode and polypropylene separator in electric double layer capacitor, J. Power Sources 195 (2010) 5130-5137.
[33] P. Sivaraman, S. Rath, V. Hande, A. Thakur, M. Patri, A. Samui, All-solid-supercapacitor based on polyaniline and sulfonated polymers, Synth. Met.156 (2006) 1057-1064.
[34] K.M. Kim, M. Latifatu, Y.-G. Lee, J.M. Ko, J.H. Kim, W.I. Cho, Effect of ceramic filler-containing polymer hydrogel electrolytes coated on the polyolefin separator on the electrochemical properties of activated carbon supercapacitor, J. Electroceramics 32 (2014) 146-153.
[35] I. Stepniak, A. Ciszewski, Electric double layer capacitors with polymer hydrogel electrolyte based on poly(acrylamide) and modified electrode and separator materials, Electrochim. Acta 54 (2009) 7396-7400.
[36] Y. Ji, N. Liang, J. Xu, D. Zuo, D. Chen, H. Zhang, Cellulose and poly(vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors, Cellulose 26 (2018) 1055-1065.
[37] N. Liang, Y. Ji, D. Zuo, H. Zhang, J. Xu, Improved performance of carbon-based supercapacitors with sulfonated poly(ether ether ketone)/poly(vinyl alcohol) composite membranes as separators, Polym. Int. 68 (2019) 120-124.
[38] P. Yang, J. Xie, C. Zhong, Biowaste-derived three-dimensional porous network carbon and bioseparator for high-performance asymmetric supercapacitor, ACS Appl. Energy Mater. 1 (2018) 616-622.
[39] D. Dahlan, N. Sartika, Astuti, E.L. Namigo, E. Taer, Effect of TiO2 on duck eggshell membrane as separators in supercapacitor applications, Materials Science Forum 827 (2015) 151-155.
[40] E. Taer, Sugianto, M.A. Sumantre, R. Taslim, Iwantono, D. Dahlan, M. Deraman, Eggs shell membrane as natural separator for supercapacitor applications C3- Adv. Mater. Res. 896 (2014) 66-69.
[41] Y.M. Shulga, S.A. Baskakov, Y.V. Baskakova, Y.M. Volfkovich, N.Y. Shulga, E.A. Skryleva, Y.N. Parkhomenko, K.G. Belay, G.L. Gutsev, A.Y. Rychagov, V.E. Sosenkin, I.D. Kovalev, Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources 279 (2015) 722-730.
[42] S.А. Baskakov, Y.V. Baskakova, N.V. Lyskov, N.N. Dremova, A.V. Irzhak, Y. Kumar, A. Michtchenok, Y.М. Shulga, Fabrication of current collector using a composite of polylactic acid and carbon nano-material for metal-free supercapacitors with graphene oxide separators and microwave exfoliated graphite oxide electrodes, Electrochim. Acta 260 (2018) 557-563.
[43] W. Chen, C. Xia, H.N. Alshareef, Graphene based integrated tandem supercapacitors fabricated directly on separators, Nano Energy 15 (2015) 1-8.