Biological Fuel Cell Applications

$20.00

Biological Fuel Cell Applications

Binti Srivastava, Madhu Khatri, Shailendra Kumar Arya

Biological fuel cells are the bio-electro chemical cells that convert chemical energy into electrical energy utilising microbes as an active biocatalyst. These are termed as green electricity generation devices because of their sustainable and eco-friendly nature, energy storage capability, and are also cost-effective. This chapter provides detailed information on biological fuel cell applications in the field of antibiotics removal from wastewater, power generation, and removal of soil contaminants such as arsenic and iron oxide, biosensors for monitoring toxic compounds, controlling denitrification, treating wastewater arising from food industry, municipal waste, sanitary wastes, sewage and simultaneously generating electricity.

Keywords
Biological Fuel Cell, Electricity Generation, Waste Water Treatment, Biosensors, Eco-Friendly, Biocatalyst, Microbes

Published online 2/21/2019, 22 pages

DOI: http://dx.doi.org/10.21741/9781644900079-5

Part of the book on Enzymatic Fuel Cells

References
[1] P. Ratajczak, M.E. Suss, F. Kaasik, F. Beguin, Carbon electrodes for capacitive technologies, Energy Storage Mater. 16 (2019) 126–145. https://doi.org/10.1016/j.ensm.2018.04.031
[2] C.M. Fernandez-Marchante, Y. Asensio, L.F. Leon, J. Villasenor, P. Canizares, J. Lobato, M.A. Rodrigo, Thermally-treated algal suspensions as fuel for microbial fuel cells, J. Electroanal. Chem. 814 (2018) 77–82. https://doi.org/10.1016/j.jelechem.2018.02.038
[3] N. Zhao, Y. Jiang, M. Alvarado-Morales, L. Treu, I. Angelidaki, Y. Zhang, Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass, Bioelectrochemistry 123 (2018) 145–149. https://doi.org/10.1016/j.bioelechem.2018.05.002
[4] D.Z. Khater, K.M. El-Khatib, R.Y.A. Hassan, Effect of vitamins and cell constructions on the activity of microbial fuel cell battery, J. Genet. Eng. Biotechnol. (2018) 0-4.
[5] T. Krieg, J.A. Wood, K.M. Mangold, D. Holtmann, Mass transport limitations in microbial fuel cells: Impact of flow configurations, Biochem. Eng. J. 138 (2018) 172-178. https://doi.org/10.1016/j.bej.2018.07.017
[6] A.R. Ruslan, V.M. Vadivelu, Nitrite pre-treatment of dewatered sludge for microbial fuel cell application, J. Environ. Sci. (2018) 2–9.
[7] J. Hu, Q. Zhang, D. Lee, H.H. Ngo, Feasible use of microbial fuel cells for pollution treatment, Renew. Energy. 129 (2018) 824-829. https://doi.org/10.1016/j.renene.2017.02.001
[8] K. Scott, An introduction to microbial fuel cells, Microbial Electrochemical and Fuel Cells, Elsevier Ltd., UK, 2016, pp. 3-27. https://doi.org/10.1016/B978-1-78242-375-1.00001-0
[9] A. Ebrahimi, G.D. Najafpour, D. Youse, Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions, Desalination 432 (2018) 1–9. https://doi.org/10.1016/j.desal.2018.01.002
[10] M. Li, M. Zhou, X. Tian, C. Tan, C.T. McDaniel, D.J. Hassett, T. Gu, Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity, Biotechnol. Adv. 36 (2018) 1316–1327. https://doi.org/10.1016/j.biotechadv.2018.04.010
[11] D.R. Lovley, Bug juice : harvesting electricity with microorganisms, Nature Rev. Microbiol. 4 (2006) 497–508. https://doi.org/10.1038/nrmicro1442
[12] G. Delaney, H.P. Bennetto, J.R. Mason, S.D. Roller, J.L. Stirling, C.F. Thurston, Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations, J. Chem. Tech. Biotechnol. 34 (2008) 13–27. https://doi.org/10.1002/jctb.280340104
[13] B. Kim, Dynamic effects of learning capabilities and profit structures on the innovation competition, Optim. Control Appl. Meth. 20 (1999) 127–144. https://doi.org/10.1002/(SICI)1099-1514(199905/06)20:3<127::AID-OCA650>3.0.CO;2-I
[14] H.M.M. Selim, A.M. Kamal, D.M.M. Ali, R.Y.A. Hassan, Bioelectrochemical systems for measuring microbial cellular functions, Electroanal. 29 (2017) 1498-1505.
[15] I. Ulusoy, A. Dimoglo, Electricity generation in microbial fuel cell systems with Thiobacillus ferrooxidans as the cathode microorganism, Int. J. Hydrogen Energy. 43 (2018) 1171–1178. https://doi.org/10.1016/j.ijhydene.2017.10.155
[16] T. Krieg, F. Enzmann, D. Sell, J. Schrader, D. Holtmann, Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant, Appl. Energy. 195 (2017) 942–949. https://doi.org/10.1016/j.apenergy.2017.03.101
[17] C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications: a review, J. Power Sources. 356 (2017) 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109
[18] G. Pasternak, J.Greenman, I. Ieropoulos, Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring, Sensors and Actuators B. Chem. 244 (2017) 815–822. https://doi.org/10.1016/j.snb.2017.01.019
[19] T. Tommasi, G. Lombardelli, Energy sustainability of microbial fuel cell (MFC): A case study, J. Power Sources. 356 (2017) 438-447. https://doi.org/10.1016/j.jpowsour.2017.03.122
[20] I.A. Ieropoulos, A. Stinchcombe, I. Gajda, S. Forbes, I. Merino-jimenez, G. Pasternak, D. Sanchez, J. Greenman, Pee power urinal – microbial fuel cell technology field trials in the context of sanitation, Environ. Sci. Water Res. Technol. 2 (2016) 336-343. https://doi.org/10.1039/C5EW00270B
[21] S. Cosnier, A.J. Gross, F. Giroud, M. Holzinger, Beyond the hype surrounding biofuel cells: What’s the future of enzymatic fuel cells? Curr. Opin. Electrochem. (2018) 1–8.
[22] C.H. Kwon, S. Lee, Y. Choi, J.A. Lee, S.H. Kim, H. Kim, D. Lima, M.E. Kozlov, R.H. Baughman, G.M. Spinks, G.G. Wallace, S.J. Kim, High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns, Nature Comm. 5 (2014) 1–7. https://doi.org/10.1038/ncomms4928
[23] S. Tsujimura, K. Murata, W. Akatsuka, Exceptionally high glucose current on a hierarchically structured porous carbon electrode with “wired” flavin adenine dinucleotide – dependent glucose dehydrogenase, J. Am. Chem. Soc. 136 (2014) 14432-14437. https://doi.org/10.1021/ja5053736
[24] L. Xu, F.A. Armstrong, Pushing the limits for enzyme-based membrane-less hydrogen fuel cells – achieving useful power and stability, RSC Adv. 5 (2014) 3649–3656. https://doi.org/10.1039/C4RA13565B
[25] N. Kemper, Veterinary antibiotics in the aquatic and terrestrial environment, Ecolo. Indi. 8 (2008) 1–13. https://doi.org/10.1016/j.ecolind.2007.06.002
[26] Y. Zhou, N. Zhu, W. Guo, Y. Wang, X. Huang, P. Wu, Z. Dang, X. Zhang, J. Xian, Simultaneous electricity production and antibiotics removal by microbial fuel cells, J. Environ. Manage. 217 (2018) 565–572. https://doi.org/10.1016/j.jenvman.2018.04.013
[27] R. Wise, Leading articles Antimicrobial resistance : priorities for action, J. Antimicro. Chemotherapy 49 (2002) 585–586. https://doi.org/10.1093/jac/49.4.585
[28] L. Wang, Y. Liu, J. Ma, F. Zhao, Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell, Water Res. 88 (2016) 322–328. https://doi.org/10.1016/j.watres.2015.10.030
[29] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresour. Technol. 102 (2011) 9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019
[30] A. Spielmeyer, B. Breier, K. Groißmeier, G. Hamscher, Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation, Bioresour. Technol. 193 (2015) 307–314. https://doi.org/10.1016/j.biortech.2015.06.081
[31] H. Kim, Y. Hong, J. Park, V.K. Sharma, S. Cho, Sulfonamides and tetracyclines in livestock wastewater, Chemosphere 91 (2013) 888–894. https://doi.org/10.1016/j.chemosphere.2013.02.027
[32] L. Hao, B. Zhang, M. Cheng, C. Feng, Effects of various organic carbon sources on simultaneous V (V) reduction and bioelectricity generation in single chamber microbial fuel cells, Bioresour. Technol. 201 (2016) 105–110. https://doi.org/10.1016/j.biortech.2015.11.060
[33] G. Strack, H.R. Luckarift, S.R. Sizemore, R.K. Nichols, K.E. Farrington, P.K. Wu, P. Atanassov, J.C. Biffinger, G.R. Johnson, Power generation from a hybrid biological fuel cell in seawater, Bioresour. Technol. 128 (2013) 222–228. https://doi.org/10.1016/j.biortech.2012.10.104
[34] Y. Gong, S.E. Radachowsky, M. Wolf, M.E. Nielsen, P.R. Girguis, C.E. Reimers, Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen / temperature sensor system, Environ. Sci. Technol. 45 (2011) 5047–5053. https://doi.org/10.1021/es104383q
[35] C.H. Kjaergaard, J. Rossmeisl, J.K. Norskov, Enzymatic versus inorganic oxygen reduction catalysts : comparison of the energy levels in a free-energy scheme, Inorg. Chem. 49 (2010) 3567–3572. https://doi.org/10.1021/ic900798q
[36] O. Schaetzle, F. Barriere, U. Schroder, An improved microbial fuel cell with laccase as the oxygen reduction catalyst, Energy Environ. Sci. 2 (2009) 96–99. https://doi.org/10.1039/B815331K
[37] S.R. Higgins, C. Lau, P. Atanassov, S.D. Minteer, M.J. Cooney, Hybrid biofuel cell : microbial fuel cell with an enzymatic air-breathing cathode, ACS Catal. 1 (2011) 994–997. https://doi.org/10.1021/cs2003142
[38] C. Vaz-dominguez, S. Campuzano, R. Olaf, M. Pita, M. Gorbacheva, S. Shleev, V.M. Fernandez, A.L. De Lacey, Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition, Biosensors and Bioelectronics 24 (2008) 531–537. https://doi.org/10.1016/j.bios.2008.05.002
[39] M. Diender, A.J.M. Stams, D.Z. Sousa, Pathways and bioenergetics of anaerobic carbon monoxide fermentation, Frontiers Microbiol. 6 (2015) 1–18. https://doi.org/10.3389/fmicb.2015.01275
[40] A. Paliwal, A. Sharma, M. Tomar, V. Gupta, Carbon monoxide (CO) optical gas sensor based on ZnO thin films, Sensors Actuators B. Chem. 250 (2017) 679-685. https://doi.org/10.1016/j.snb.2017.05.064
[41] M. Shojaee, S. Nasresfahani, M.H. Sheikhi, Hydrothermally synthesized Pd-loaded SnO2/partially reduced graphene oxide nanocomposite for effective detection of carbon monoxide at room temperature, Sensors Actuators B. Chem. 254 (2017) 457-467. https://doi.org/10.1016/j.snb.2017.07.083
[42] S. Kundu, R. Sudarshan, M. Narjinary, Pd impregnated gallia: Tin oxide nanocomposite – An excellent high temperature carbon monoxide sensor, Sensors Actuators B. Chem. 254 (2018) 437-447. https://doi.org/10.1016/j.snb.2017.07.094
[43] S. Zhou, S. Huang, Y. Li, N. Zhao, H. Li, I. Angelidaki, Y. Zhang, Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring, Talanta 186 (2018) 368–371. https://doi.org/10.1016/j.talanta.2018.04.084
[44] J. Sun, G.P. Kingori, R. Si, D. Zhai, Z. Liao, D. Sun, T. Zheng, Y. Yong, Microbial fuel cell-based biosensors for environmental monitoring : a review, Water Sci. Technol. 71 (2015) 801–809. https://doi.org/10.2166/wst.2015.035
[45] T. Ranatunga, K. Hiramatsu, T. Onishi, Controlling the process of denitrification in flooded rice soils by using microbial fuel cell applications, Agric. Water Manag. 206 (2018) 11–19. https://doi.org/10.1016/j.agwat.2018.04.041
[46] H. Akiyama, K. Yagi, X. Yan, Direct N2O emissions from rice paddy fields: Summary of available data, Global Biogeochem. Cycles. 19 (2005) 1–10.
[47] S. Huang, H.K. Pant, J. Lu, Effects of water regimes on nitrous oxide emission from soils, Ecol. Eng. 31 (2007) 9–15.
[48] P. Pramanik, M. Haque, S.Y. Kim, P.J. Kim, C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season, Sci. Total Environ. 490 (2014) 622–628. https://doi.org/10.1016/j.scitotenv.2014.05.046
[49] D.R. Lovley, The microbe electric : conversion of organic matter to electricity, Curr. Opin. Biotechnol. 19 (2008) 564–571. https://doi.org/10.1016/j.copbio.2008.10.005
[50] S. Khan, L. Aijun, S. Zhang, Q. Hu, Y. Zhu, Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation, J. Hazard. Mater. 152 (2008) 506–515. https://doi.org/10.1016/j.jhazmat.2007.07.014
[51] C. Abourached, M.J. English, H. Liu, Wastewater treatment by microbial fuel cell (MFC) prior irrigation water reuse, J. Clean. Prod. 137 (2016) 144–149. https://doi.org/10.1016/j.jclepro.2016.07.048
[52] K.P.M. Mosse, A.F. Patti, R.J. Smernik, E.W. Christen, T.R. Cavagnaro, Physicochemical and microbiological effects of long- and short-term winery wastewater application to soils, J. Hazard. Mater. 201–202 (2012) 219–228. https://doi.org/10.1016/j.jhazmat.2011.11.071
[53] Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications, Sensors Actuators B. Chem. 256 (2018) 656-664. https://doi.org/10.1016/j.snb.2017.09.206
[54] D. Norton-brandao, S.M. Scherrenberg, J.B. Van Lier, Reclamation of used urban waters for irrigation purposes: A review of treatment technologies, J. Environ. Manage. 122 (2013) 85–98. https://doi.org/10.1016/j.jenvman.2013.03.012