Polymer-metal interactions and their effect on tool-ply friction of C/PEKK in melt

Polymer-metal interactions and their effect on tool-ply friction of C/PEKK in melt


download PDF

Abstract. Excessive friction or adhesion between tool and surface ply can lead to processing defects during thermoplastic composite manufacturing. A previous study identified a notable increase in friction or adhesion between a mild steel tool surface and C/PEKK with prolonged dwell time at elevated temperature, a phenomenon that could not be explained by our current understanding. This work presents additional friction and differential scanning calorimetry experiments to demonstrate that the increased adhesion results from polymer-metal interactions that lead to polymer degradation and metal-polymer bonding. These findings underline the importance of tool material selection in both processing and characterization of tool-ply friction.

Thermoplastic Matrix, Tool-Ply Friction, Chemical Bonding, Polymer Degradation

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: GROUVE Wouter, PAMUNGKAS Hafidz, HELTHUIS Nick, PIERIK Rens, AKKERMAN Remko, Polymer-metal interactions and their effect on tool-ply friction of C/PEKK in melt, Materials Research Proceedings, Vol. 41, pp 503-512, 2024

DOI: https://doi.org/10.21741/9781644903131-56

The article was published as article 56 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] D. Kugler and T.J. Moon, Identification of the most significant processing parameters on the development of fiber waviness in thin laminates, J. Compos. Mater. 36:12 (2002) 1451-1479. https://doi.org/10.1177/0021998302036012575
[2] M. Thor, M.G.R. Sause, R.M. Hinterhölzl, Mechanisms of origin and classification of out-of-plane fiber waviness in composite materials–A review, J. Compos. Sci. 4:3 (2020) p.130. https://doi.org/10.3390/jcs4030130
[3] E.T.M Krämer, W.J.B. Grouve, L.L. Warnet, S. Koussios, R. Akkerman, Tool-ply interaction in the formation of waviness during C/PEEK consolidation, Compos. – A 144 (2021) p. 106327. https://doi.org/10.1016/j.compositesa.2021.106327
[4] U. Sachs et al., Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results, Compos. – A: Appl. Sci. Manuf. 67 (2014) 289-298. https://doi.org/10.1016/j.compositesa.2014.08.026
[5] A.M. Murtagh, J.J. Lennon, and P.J. Mallon, Surface friction effects related to pressforming of continuous fibre thermoplastic composites, Compos. Manuf. 6:34 (1995) 169-175. https://doi.org/10.1016/0956-7143(95)95008-M
[6] R.H.W. Ten Thije, R. Akkerman, M. Ubbink, and L. van der Meer, A lubrication approach to friction in thermoplastic composites forming processes, Compos. – A 42:8 (2011) 950-960. https://doi.org/10.1016/j.compositesa.2011.03.023
[7] A. Kapshammer, D. Laresser, M.C. Miron, F. Baudach, and Z. Major, Characterization and modeling of ply/tool and ply/ply slippage phenomena of unidirectional polycarbonate CF tapes, Polymers 15:17 (2023) p. 3520. https://doi.org/10.3390/polym15173520
[8] S.R. Morris and C. Sun, An investigation of interply slip behaviour in AS4/PEEK at forming temperatures, Compos. Manuf. 5:4 (1994) 217-224. https://doi.org/10.1016/0956-7143(94)90136-8
[9] Y. Zhao, T. Zhang, H. Li, and B. Zhang, Characterization of prepreg-prepreg and prepreg-tool friction for unidirectional carbon fiber/epoxy prepreg during hot diaphragm forming process, Polym. Test 84 (2020) p. 106440. https://doi.org/10.1016/j.polymertesting.2020.106440
[10] E.R. Pierik, W.J.B. Grouve, S. Wijskamp, and R. Akkerman, Prediction of the peak and steady-state ply–ply friction response for UD C/PAEK tapes, Compos. – A 163 (2022) p. 107185. https://doi.org/10.1016/j.compositesa.2022.107185
[11] E.R. Pierik, W.J.B. Grouve, S. Wijskamp, and R. Akkerman, Modeling the effect of temperature and pressure on the peak and steady-state ply–ply friction response for UD C/PAEK tapes,” Compos. – A 173 (2023) p. 107671. https://doi.org/10.1016/j.compositesa.2023.107671
[12] E.R. Pierik, J. Liddiard, W.J.B. Grouve, S. Wijskamp, and R. Akkerman, On the effect of release agent and heating time on tool-ply friction of thermoplastic composite in melt, Key Engineering Materials 926 (2022) 1276-1283. https://doi.org/10.4028/p-e6m2a7
[13] R.H.W. ten Thije and R. Akkerman, Design of an experimental setup to measure tool-ply and ply-ply friction in thermoplastic laminates, Int. J. Mater. Form. 2:1 (2009) 197-200. https://doi.org/10.1007/s12289-009-0638-y
[14] P. Patel, T.R. Hull, R.W. McCabe, D. Flath, J. Grasmeder, and M. Percy,
Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies, Polym. Degrad. Stab. 95:5 (2010) 709–718. https://doi.org/10.1016/j.polymdegradstab.2010.01.024
[15] C. Croshaw, L. Hamernik, L. Ghanbari, A. Browning, and J. Wiggins, Melt-state
degradation mechanism of poly (ether ketone ketone): the role of branching on crystallization and rheological behavior, Polym. Degrad. Stab. 200 (2022) p. 109968. https://doi.org/10.1016/j.polymdegradstab.2022.109968
[16] M. Sonnenberg et al., Polymer-induced metal diffusion during plastic processing: a reason for deposit formation, J. Polym. Eng. 39:5 (2019) 472–480. https://doi.org/10.1515/polyeng-2018-0324
[17] C. Theile-Rasche, T. Meng, T. de los Arcos, and G. Grundmeier, “Analysis of polycarbonate degradation at melt/FeCr-alloy interfaces as a function of the alloy composition by means of combinatorial thin film chemistry,” SN Appl. Sci. 5:10 (2023). https://doi.org/10.1007/s42452-023-05441-5
[18] J.M. Burkstrand, Formation of a copper-oxygen-polymer complex on polystyrene, Appl. Phys. Lett. 33:5 (1978) 387-389. https://doi.org/10.1063/1.90405
[19] J.M. Burkstrand, “Substrate effects on the electronic structure of metal overlayers–an XPS study of polymer-metal interfaces,” Phys. Rev. B. 20:12 (1979) 4853-4858. https://doi.org/10.1103/PhysRevB.20.4853
[20] J.M. Burkstrand, “Metal-polymer interfaces: Adhesion and X-ray photoemission studies,” J. Appl. Phys. 52:7 (1981) 4795-4800. https://doi.org/10.1063/1.329320
[21] M. Wiesing, T. de los Arcos, M. to Baben, H. Rueß, J. Schneider, and G. Grundmeier, Analysis of the inhibition of thermal degradation of molten polycarbonate at tool steel interfaces by thin TiAlN coatings, Polym. Degrad. Stab. 143 (2017) 196-206. https://doi.org/10.1016/j.polymdegradstab.2017.07.013
[22] G. Raos and B. Zappone, Polymer adhesion: Seeking new solutions for an old problem, Macromolecules 54:23 (2021) 10617–10644. https://doi.org/10.1021/acs.macromol.1c01182
[23] Data for this publication: https://doi.org/10.4121/f2a26463-a241-4698-bb3d-de31657d41d3