Mechanical characterization and behavior modelling of Ti-6Al-4V alloy in hot forming conditions

Mechanical characterization and behavior modelling of Ti-6Al-4V alloy in hot forming conditions


download PDF

Abstract. Ti-6Al-4V is a widely used titanium alloy in superplastic forming process which requires high temperatures (T≈900 °C) and low strain rates (ε ˙≈〖10〗^(-3) s^(-1)). One way to reduce the costs of the process is to use a lower forming temperature and/or higher strain rate, up to 〖10〗^(-2) s^(-1). However, the behavior of Ti-6Al-4V alloy still need to be modeled at such forming conditions and for different initial microstructure. In order to characterize the mechanical behavior of Ti-6Al-4V at temperature between 400 °C and 700 °C, relaxation and tensile tests performed under small and large deformation conditions were conducted. Depending on the test, the deformations were evaluated through two kinds of measurements, respectively with an extensometer and with a digital image correlation technique (DIC). Similar experimental results were obtained, validating the use of DIC at high temperature to evaluate high strain levels. Two different microstructures of Ti-6Al-4V alloy were tested to study the impact of the initial microstructure on the mechanical behavior. For similar conditions of strain rate and temperature, representative of the forming process, a fine-grained microstructure exhibits an enhancement of mechanical behavior in comparison with the classical coarse-grained microstructure used in the current industrial process. Finally, an elasto-viscoplastic has been identified for each microstructure.

Behavior Modelling, Hot Forming, Ti-6Al-4V, Mechanical Testing, Digital Image Correlation (DIC)

Published online 4/24/2024, 9 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: D’ARCHIVIO Lucas, PENAZZI Luc, VELAY Vincent, VIDAL Vanessa, Mechanical characterization and behavior modelling of Ti-6Al-4V alloy in hot forming conditions, Materials Research Proceedings, Vol. 41, pp 2226-2234, 2024


The article was published as article 245 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] Y. Combres, « Propriétés du titane et de ses alliages », Métaux Alliages Non Ferr., août 2015.
[2] G. Gilles et al., « Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6V at room temperature », Int. J. Solids Struct., 48 (2011) 1277 1289.
[3] N. Kotkunde, H. N. Krishnamurthy, P. Puranik, A. K. Gupta, et S. K. Singh, « Microstructure study and constitutive modeling of Ti–6Al–4V alloy at elevated temperatures », Mater. Des. 54 (2014) 96 103.
[4] L. Despax, « Étude des mécanismes de plasticité lors de la mise en forme de l’alliage de titane Ti-6Al-4V : influence de la microstructure initiale et des conditions de sollicitations thermomécaniques », Thesis, Ecole des Mines d’Albi-Carmaux, 2021.
[5] R. Julien, V. Velay, V. Vidal, Y. Dahan, R. Forestier, et F. Rézaï-Aria, « Characterization and modeling of forged Ti-6Al-4V Titanium alloy with microstructural considerations during quenching process », Int. J. Mech. Sci., 142 143 (2018) 456 467.
[6] Q. Sirvin, « Etude du comportement mécanique de tôles en alliage de titane et des paramètres procédé dans les opérations d’emboutissage à hautes températures », Thesis, Ecole des Mines d’Albi-Carmaux, 2018.
[7] H. J. Bong, D. H. Yoo, D. Kim, Y.-N. Kwon, et J. Lee, « Correlative Study on Plastic Response and Formability of Ti-6Al-4V Sheets under Hot Forming Conditions », J. Manuf. Process., 58 (2020) 775 786.
[8] G. R. Johnson et W. H. Cook, « A Constitutive Model And Data For Metals », Proc. 7th Int. Symp. Ballist., p. 541 547, 1983.
[9] N. Kotkunde, A. D. Deole, A. K. Gupta, et S. K. Singh, « Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures », Mater. Des., 55 (2014) 999 1005, doi: 10.1016/j.matdes.2013.10.089
[10] S. Gao, Y. Sang, Q. Li, Y. Sun, Y. Wu, et H. Wang, « Constitutive modeling and microstructure research on the deformation mechanism of Ti-6Al-4V alloy under hot forming condition », J. Alloys Compounds, 892 (2022) 162128.
[11] P. Gao, M. Fu, M. Zhan, Z. Lei, et Y. Li, « Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review », J. Mater. Sci. Technol., 39 (2020) 56 73.
[12] L. Despax, V. Vidal, D. Delagnes, M. Dehmas, H. Matsumoto, V. Velay, « Influence of strain rate and temperature on the deformation mechanisms of a fine-grained Ti-6Al-4V alloy », Mater. Sci. Eng. A, 790 (2020) 139718.
[13] P. Luong, R. Bonnaire, J. Périé, Q. Sirvin, et L. Penazzi, « Speckle pattern creation methods for two‐dimensional digital image correlation strain measurements applied to mechanical tensile tests up to 700°C », Strain, 57 (2021) e12388.
[14] L. P. Luong, « Development of the two-dimension Digital Image Correlation method (2D-DIC) at high temperatures applicable for titanium alloys forming process », Thesis, Ecole des Mines d’Albi-Carmaux.
[15] E.-L. Odenberger, R. Pederson, et M. Oldenburg, « Finite element modeling and validation of springback and stress relaxation in the thermo-mechanical forming of thin Ti-6Al-4V sheets », Int. J. Adv. Manuf. Technol., 104 (2019) 3439 3455.
[16] M. Rollin, « Study and Optimization of Cooling Conditions of Titanium Alloy Parts Manufactured by Superplastic Forming », Thèse, Ecole des Mines d’Albi-Carmaux, 2021.