Identification of friction coefficient between uncoated carbide tool and Ti-6Al-4V alloy under different lubrication conditions

Identification of friction coefficient between uncoated carbide tool and Ti-6Al-4V alloy under different lubrication conditions

FERSI Achraf, AYED Yessine, LAVISSE Bruno, GERMAIN Guénaël

download PDF

Abstract. During machining, the friction between the tool and the workpiece (cutting face and flank face) is a significant tribological phenomenon because it strongly influences the cutting operation. Indeed, higher friction leads to an increase of cutting forces, a greater heat generation, a premature tool wear and a surface degradation. This study focuses on tool (WC/Co)/workpiece (Ti-6Al-4V) friction under different cooling conditions (dry, emulsion, cryogenic). Determining the friction coefficient requires numerical simulations to separate the tribological phenomena. For this purpose, several modeling methods are compared (Lagrangian, CEL, and ALE). Experimental tests revealed that the friction coefficient depends not only on the sliding velocity but also on lubrication modes. Specifically, the lowest friction coefficient is obtained under cryogenic condition. Adhesive phenomena on the WC/Co pin are observed in the friction zone, particularly at high sliding velocities.

Friction Coefficient, Cryogenic Condition, Titanium Alloy, Adhesion, Numerical Simulation

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: FERSI Achraf, AYED Yessine, LAVISSE Bruno, GERMAIN Guénaël, Identification of friction coefficient between uncoated carbide tool and Ti-6Al-4V alloy under different lubrication conditions, Materials Research Proceedings, Vol. 41, pp 1990-1999, 2024


The article was published as article 220 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M. Bogdan-Chudy et al., « Tribological and thermal behavior with wear identification in contact interaction of the Ti6Al4V-sintered carbide with AlTiN coatings pair », Tribol. Int., vol. 167, p. 107394, mars 2022.
[2] N. Uçak, J. Outeiro, K. Aslantas, A. Çiçek, et B. Çetin, « Determination of the friction coefficients between uncoated WC-Co tools and L-PBF and wrought Ti-6Al-4V alloys for micro-milling simulations », Procedia CIRP, vol. 117, p. 281 286, 2023.
[3] S. Basten, L. Seis, M. Oehler, B. Kirsch, H. Hasse, et J. C. Aurich, « Tribological behaviour of AISI 4140 and WC-Co carbides during dry condition, using cryogenic media, and sub-zero metalworking fluids at high contact stresses », Wear, vol. 512 513, p. 204525, janv. 2023.
[4] C. Courbon, F. Pusavec, F. Dumont, J. Rech, et J. Kopac, « Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—Application to the context of machining with carbide tools », Tribol. Int., vol. 66, p. 72 82, oct. 2013.
[5] F. Pušavec, L. Sterle, M. Kalin, D. Mallipeddi, et P. Krajnik, « Tribology of solid-lubricated liquid carbon dioxide assisted machining », CIRP Ann., vol. 69, no 1, p. 69 72, 2020.
[6] D. Smolenicki, J. Boos, F. Kuster, H. Roelofs, et C. F. Wyen, « In-process measurement of friction coefficient in orthogonal cutting », CIRP Ann., vol. 63, no 1, p. 97 100, 2014.
[7] C. Bonnet, J. Rech, et G. Poulachon, « Characterization of friction coefficient for simulating drilling contact for titanium TiAl6V4 alloy », CIRP J. Manuf. Sci. Technol., vol. 29, p. 130 137, mai 2020.
[8] C. Courbon, L. Sterle, M. Cici, et F. Pusavec, « Tribological Effect of Lubricated Liquid Carbon Dioxide on TiAl6V4 and AISI1045 under Extreme Contact Conditions », Procedia Manuf., vol. 47, p. 511 516, 2020.
[9] F. Zemzemi, J. Rech, W. Ben Salem, A. Dogui, et P. Kapsa, « Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels », J. Mater. Process. Technol., vol. 209, no 8, p. 3978 3990, avr. 2009.
[10] F. P. Bowden et D. Tabor, The Friction and Lubrication of Solids. Clarendon Press, 2001.
[11] M. Sima et T. Özel, « Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V », Int. J. Mach. Tools Manuf., vol. 50, no 11, p. 943 960, nov. 2010.
[12] Y. Karpat, « Temperature dependent flow softening of titanium alloy Ti6Al4V: An investigation using finite element simulation of machining », J. Mater. Process. Technol., vol. 211, no 4, p. 737 749, avr. 2011.
[13] C. Ramirez, « Critères d’optimisation des alliages de TITane pouraméliorer leur USinabilité », p. 253, 2009.
[14] H. Ben Abdelali, C. Claudin, J. Rech, W. Ben Salem, Ph. Kapsa, et A. Dogui, « Experimental characterization of friction coefficient at the tool–chip–workpiece interface during dry cutting of AISI 1045 », Wear, vol. 286 287, p. 108 115, mai 2012.
[15] N. Fezai et al., « Characterization of friction for the simulation of multi-pass orthogonal micro-cutting of 316L stainless steel », Procedia CIRP, vol. 108, p. 845 850, 2022.
[16] L. Meier, N. Schaal, et K. Wegener, « In-process Measurement of the Coefficient of Friction on Titanium », Procedia CIRP, vol. 58, p. 163 168, 2017.
[17] E. M. Skalante, H. Makich, et M. Nouari, « Effect of cryogenic friction conditions on surface quality », Procedia CIRP, vol. 108, p. 675 680, 2022.
[18] L. Sterle, F. Pušavec, et M. Kalin, « Determination of friction coefficient in cutting processes: comparison between open and closed tribometers », Procedia CIRP, vol. 82, p. 101 106, 2019.
[19] A. Egaña, J. Rech, et P. J. Arrazola, « Characterization of Friction and Heat Partition Coefficients during Machining of a TiAl6V4 Titanium Alloy and a Cemented Carbide », Tribol. Trans., vol. 55, no 5, p. 665 676, sept. 2012.