Thermoelectric Properties of Polymer and Organic-Inorganic Composites


Thermoelectric Properties of Polymer and Organic-Inorganic Composites

Sahar Sarfaraz, Maria Wasim, Aneela Sabir, Muhammad Shafiq

This chapter provides insights of the thermoelectric properties of polymer in addition to organic and inorganic composites. Devoid of any maintenance requirement or moving parts, thermoelectric energy generation offers incredibly reliable, small sized, light and quiet operative power sources with no moving parts and no maintenance requirements. About two centuries ago, thermoelectricity was used as an alternate of petroleum power plants.

Thermoelectric Polymer, Organic, Inorganic, Composites

Published online 2/10/2024, 13 pages

Citation: Sahar Sarfaraz, Maria Wasim, Aneela Sabir, Muhammad Shafiq, Thermoelectric Properties of Polymer and Organic-Inorganic Composites, Materials Research Foundations, Vol. 162, pp 56-68, 2024


Part of the book on Thermoelectric Polymers

[1] F. Jiang, X.J. Kun, B. Lu, X. Yu, H.R. Jin, L.L. Feng, Thermoelectric performance of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate), Chin. Phys. Lett. 25 (2008) 2202-2205.
[2] Y.W. Park, W.K. Han, C.H. Choi, H. Shirakawa, Metallic nature of heavily doped polyacetylene derivatives: Thermopower, Phys. Rev. B. 30 (1984) 5847-5851.
[3] H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, J. Ouyang, Recent development of thermoelectric polymers and composites, Macromol. Rapid Commun. 39 (2018) 1700727.
[4] D.S. Maddison, J. Unsworth, R.B. Roberts, Electrical conductivity and thermoelectric power of polypyrrole with different doping levels, Syn. Metal. 26 (1988) 99-108.
[5] I. Lévesque, P.-O. Bertrand, N. Blouin, M. Leclerc, S. Zecchin, G. Zotti, C. Ratcliffe, D. Klug, X. Gao, F. Gao, J. Tse, Synthesis and thermoelectric properties of polycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives, Chem. Mater. 19 (2007) 2128.
[6] M. Lepinoy, P. Limelette, B. Schmaltz, F.T. Van, Thermopower scaling in conducting polymers, Sci. Reports. 10 (2020) 8086.
[7] K. See, J. Feser, C. Chen, A. Majumdar, J. Urban, R. Segalman, Water-processable polymer-nanocrystal hybrids for thermoelectrics, Nano Lett. 10 (2010) 4664-4667.
[8] D. Kim, Y.S. Kim, K. Choi, J. Grunlan, C. Yu, Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-Ethylenedioxythiophene): poly(Styrenesulfonate), ACS Nano. 4 (2010) 513-523.
[9] H. Wang, C. Yu, Organic thermoelectrics: Materials preparation, performance optimization and device integration, Joule. 3 (2019) 53-80.
[10] J. Mao, G. Chen, Z. Ren, Thermoelectric cooling materials, Nat. Mater. 20 (2021) 454-461.
[11] H. Xi, L. Luo, G. Fraisse, Development and applications of solar-based thermoelectric technologies, Renew. Sustain. Ener. Rev. 11 (2007) 923-936.
[12] M. Lu, X. Zhang, J. Ji, X. Xu, Y. Zhang, Research progress on power battery cooling technology for electric vehicles, J. Energ. Storage. 27 (2020) 101155.
[13] Y. Gurevich, J.V. Pérez, Peltier Effect in Semiconductors, 2014.
[14] B. Sherman, R. Heikes, R. Ure, Calculation of efficiency of thermoelectric devices, J. Appl. Phys. 31 (1960) 1-16.
[15] M.J. Klein, P.H.E. Meijer, Principle of minimum entropy production, Phys. Rev. 96 (1954) 250-255.
[16] Y. Demirel, Fundamentals of non-equilibrium thermodynamics, in: Y. Demirel (Eds.), Non-equilibrium Thermodynamics, Elsevier, Amsterdam, 2014, pp. 119-176.
[17] C.A. Domenicali, Irreversible thermodynamics of thermoelectricity, Rev. Modern Phys. 26 (1954) 237-275.
[18] J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (1959) 1046-1051.
[19] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature Mater. 7 (2008) 105-114.
[20] M. Wasim, A. Sabir, R.U. Khan, Membranes with tunable graphene morphology prepared via Stöber method for high rejection of azo dyes, J. Envtal. Chem. Eng. 9 (2021) 106069.
[21] M. Wasim, S. Sagar, A. Sabir, M. Shafiq, T. Jamil, Decoration of open pore network in polyvinylidene fluoride/MWCNTs with chitosan for the removal of reactive orange 16 dye, Carbohydr. Polym. 174 (2017) 474-483.
[22] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science. 320 (2008) 634-638.
[23] Z. Lee, Y. Tang, D. Zou, Thermoelectric and stress distributions around a smooth cavity in thermoelectric material, Inter. J. Mech. Sci. 107198 (2022).
[24] W.M. Yim, F.D. Rosi, Compound tellurides and their alloys for peltier cooling-A review, Solid-State Electron. 1972. 15 (1972) 1121-1140.
[25] V. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, D. Rowe, Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds, J. Appl. Phys. 87 (2007) 7871-7875.
[26] K.L. Jablonska, Semiconductors, 2022.
[27] W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, C. Uher, Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi, Intermetallics. 19 (2011) 404-408.
[28] M. Shikano, R. Funahashi, Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure, Appl. Phys. Lett. 82 (2003) 1851-1853.