Passive vibration damping of a plate interacting with a flowing fluid using shunted piezoelectric element

Passive vibration damping of a plate interacting with a flowing fluid using shunted piezoelectric element

Sergey Lekomtsev, Valerii Matveenko, Alexander Senin

download PDF

Abstract. This paper considers a thin plate with a single piezoceramic element located on the outer surface of the structure and connected to a series electric circuit. The dependence of complex eigenvalues of the electromechanical system on the resistance and inductance of the electric circuit is analyzed to select their optimal values for suppressing the resonant vibrations of the plate interacting with a flowing fluid. The numerical studies show that in contrast to the known analytical expression, these values lead to a smaller change in the frequency spectrum of the original system and provide more effective damping of vibrations in terms of maximum rate of vibration decay. The actual decrease in the amplitude of vibrations is demonstrated by the frequency response curves.

Vibrations Damping, Plate, Piezoelectric Elements, Electric Circuit, Flowing Fluid, Finite Element Method

Published online 8/10/2023, 12 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Sergey Lekomtsev, Valerii Matveenko, Alexander Senin, Passive vibration damping of a plate interacting with a flowing fluid using shunted piezoelectric element, Materials Research Proceedings, Vol. 31, pp 634-645, 2023


The article was published as article 65 of the book Advanced Topics in Mechanics of Materials, Structures and Construction

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] R.L. Forward, Electronic damping of vibrations in optical structures, J. Appl. Optics, 18 (1979) 690–697.
[2] N.W. Hagood, A.H. von Flotow, Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib., 146 (1991) 243–268.
[3] C.H. Park, D.J. Inman, Enhanced piezoelectric shunt design, Shock Vib., 10 (2003) 127–133.
[4] A.J. Fleming, S.O.R. Moheimani, Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control, IEEE Trans. Contr. Syst. Technol., 13 (2005) 98–112.
[5] M. Porfiri, C. Maurini, J.-P. Pouget, Identification of electromechanical modal parameters of linear piezoelectric structures, Smart Mater. Struct., 16 (2007) 323–331.
[6] O. Thomas, J. Ducarne, J.-F. Deü, Performance of piezoelectric shunts for vibration reduction, Smart Mater. Struct., 21 (2012) 015008.
[7] P. Soltani, G. Kerschen, G. Tondreau, A. Deraemaeker, Piezoelectric vibration damping using resonant shunt circuits: an exact solution, Smart Mater. Struct., 23 (2014) 125014.
[8] O. Heuss, R. Salloum, D. Mayer, T. Melz, Tuning of a vibration absorber with shunted piezoelectric transducers, Arch. Appl. Mech., 86 (2016) 1715–1732.
[9] J.F. Toftekær, A. Benjeddou, J. Høgsberg, General numerical implementation of a new piezoelectric shunt tuning method based on the effective electromechanical coupling coefficient, Mech. Adv. Mater. Struct., 27 (2020) 1908–1922.
[10] J.A.B. Gripp, D.A. Rade, Vibration and noise control using shunted piezoelectric transducers: A review, Mech. Syst. Signal Process., 112 (2018) 359–383.
[11] A. Presas, Y. Luo, Z. Wang, D. Valentin, M. Egusquiza, A review of PZT patches applications in submerged systems, Sensors, 18 (2018) 2251.
[12] K. Marakakis, G.K. Tairidis, P. Koutsianitis, G.E. Stavroulakis, Shunt piezoelectric systems for noise and vibration control: A review, Front. Built Environ. 5 (2019) 64.
[13] A.J. Fleming, S.O.R. Moheimani, Piezoelectric transducers for vibration control and damping, 1st ed., Springer, London, 2006.
[14] J.M. Zhang, W. Chang, V.K. Varadan, V.V. Varadan, Passive underwater acoustic damping using shunted piezoelectric coatings, Smart Mater. Struct., 10 (2001) 414–420.
[15] J. Kim, J.-H. Kim, Multimode shunt damping of piezoelectric smart panel for noise reduction, J. Acoust. Soc. Am., 116 (2004) 942–948.
[16] J. Kim, Y.-C. Jung, Broadband noise reduction of piezoelectric smart panel featuring negative-capacitive converter shunt circuit, J. Acoust. Soc. Am., 120 (2006) 2017–2025.
[17] W. Larbi, J.-F. Deü, R. Ohayon, Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid. Compos. Struct., 94 (2012) 501–509.
[18] Y. Sun, Z. Li, A. Huang, Q. Li, Semi-active control of piezoelectric coating’s underwater sound absorption by combining design of the shunt impedances, J. Sound Vib., 355 (2015) 19–38.
[19] L. Pernod, B. Lossouarn, J.-A. Astolfi, J.-F. Deü, Vibration damping of marine lifting surfaces with resonant piezoelectric shunts, J. Sound Vib., 496 (2021) 115921.
[20] S.V. Lekomtsev, D.A. Oshmarin, N.V. Sevodina, An approach to the analysis of hydroelastic vibrations of electromechanical systems, based on the solution of the non-classical eigenvalue problem, Mech. Adv. Mater. Struct., 28 (2021) 1957–1964.
[21] M.A. Iurlov, A.O. Kamenskikh, S.V. Lekomtsev, V.P. Matveenko, Passive suppression of resonance vibrations of a plate and parallel plates assembly, interacting with a fluid, Int. J. Struct. Stabil. Dynam., 22 (2022) 2250101.
[22] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, 2nd ed., CRC Press, Boca Raton, 2004.
[23] IEEE Standard on Piezoelectricity, ANSI/IEEE Std176-1987, IEEE, New York, 1988.
[24] O. Thomas, J.-F. Deü, J. Ducarne, Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients, Int. J. Numer. Meth. Eng. 80 (2009) 235–268.
[25] S.H. Moon, S.J. Kim, Active and passive suppressions of nonlinear panel flutter using finite element method, Appl. Math. Model. 39 (2001) 2042–2050.
[26] G. Yao, F.-M. Li. The stability analysis and active control of a composite laminated open cylindrical shell in subsonic airflow, J. Intel. Mat. Sys. Struct. 25 (2014) 259–270.
[27] A. Benjeddou, J.-F. Deü, S. Letombe, Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation, Thin-Walled Struct. 40 (2002) 573–593.
[28] G.G. Sheng, X. Wang, Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells, Appl. Math. Model. 34 (2010) 2630–2643.
[29] H. Allik, J.R. Hughes, Finite element method for piezoelectric vibration, Int. J. Numer. Meth. Eng. 2 (1970) 151–157.
[30] M.A. Il’gamov, Vibrations of elastic shells containing liquid and gas, Nauka, Moscow, 1969.
[31] M.P. Païdoussis, Fluid–structure interactions: slender structures and axial flow, Vol. 2, 2nd ed., Elsevier Academic Press, London, 2014.
[32] S.A. Bochkarev, S.V. Lekomtsev, V.P. Matveenko, Hydroelastic stability of a rectangular plate interacting with a layer of ideal flowing fluid, Fluid Dyn. 51 (2016) 821–833.
[33] O.C. Zienkiewicz, R.L. Taylor, The finite element method. The basis, Vol. 1, 5th ed., Butterworth-Heinemann, Oxford, 2001.
[34] J.N. Reddy, An introduction to nonlinear finite element analysis, 2nd ed., Oxford University Press, London, 2015.
[35] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (1988) 235–286.
[36] R.B. Lehoucq, D.C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl., 17 (1996) 789–821.
[37] V.P. Matveenko, N.A. Iurlova, D.A. Oshmarin, N.V. Sevodina, M.A. Iurlov, An approach to determination of shunt circuits parameters for damping vibrations, Int. J. Smart Nano Mater., 9 (2018) 135–149.