Nanocomposites and their Applications


Nanocomposites and their Applications

S. Sreevidya, Sushma Yadav, Yokraj Katre, Ajaya Kumar Singh, Abbas Rahdar

The trends in the current developments for utilising the available natural resources as bio-renewable/sustainable supplies have captured the attention of scientists/industrialists in the recent past. The unlimited alarms that are interrelated with the health and environment due to the exhaustive piling up of unwanted and discarded stocks and the damages caused, are indirectly interwound with the foreseeable reduction of fossil/mineral wealth. The bio-renewable/sustainable supplies are hence, opted as platforms for reinforcement in a wide array of applicable functions. Developmental innovations leading to new approaches and perfect tools, as nano-composites through green bio-renewable/sustainable/bio-degradable supplies, submit for note-worthy advantages and are found to be associated with exceptional attributes such as rapid and cost-effective fabrication, with better thermal/mechanical stability, besides easy portability/reusability. It would be worthy mentioning that nano-composites from structured bio-degradable resources find their utility in a broad spectrum of fragments such as food preservation/packaging, agriculture/bio-sensors, bio-medical, optical/energy-storage, water-treatment/marine, automotive/automation, construction, flame-retardant/coating, and many more. Here in this chapter, we comprehensively compare the recent advancement/development of varied applications of nano-composites from bio-renewable/non-bio-renewable reserves. In conclusion, the solutions to the debatable question, and the potential developmental break-ups with new-openings for the naturally agglomerated nano-composites are reflected briefly.

Nanocomposites, Anti-Bacterial-Activity, Dye Degradation, Biosensing

Published online , 40 pages

Citation: S. Sreevidya, Sushma Yadav, Yokraj Katre, Ajaya Kumar Singh, Abbas Rahdar, Nanocomposites and their Applications, Materials Research Foundations, Vol. 148, pp 63-102, 2023


Part of the book on Applications of Emerging Nanomaterials and Nanotechnology

[1] A. Sharif and M.E. Hoque, Renewable resource-based polymers, in: Bio-based polymers and nanocomposites, M. Sanyang, M. Jawaid (Eds.), pp. 1 – 28, Springer, Cham. Switzerland, 2019.
[2] B.D. Malhotra and Md. A. Ali, Nanocomposite materials: biomolecular devices, in: Nanomaterials for biosensors fundamentals and applications micro and nano technologies, B. D. Malhotra, Md. A. Ali (Eds.), pp 145 – 159, Elsevier, Amsterdam, Netherlands, 2018.
[3] E.O. Mikličanin, A. Badnjević, A. Kazlagić and M. Hajlovac, Nanocomposites: a brief review, Health Technol., 10(2020) 51–59,
[4] B. Ates, S. Koytepe, A. Ulu, C. Gurses and V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources, Chem. Rev., 120(2020) 9304–9362,
[5] S. Jafarzadeh, A.M. Nafchi, A. Salehabadi, N.O. Abbasabadi and S.M. Jafari, Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables, Adv. Colloid Interface Sci., 291(2021) 102405,
[6] S. Sreevidya, S. Kirtana, Y.R. Katre, A.K. Singh and J. Singh, Functionalized nanomaterial (FNM)–based catalytic materials for water resources, in: Functionalized nanomaterials for catalytic application, C. M. Hussain, S. K. Shukla, B. Mangla (Eds.), pp 1 – 51, Scrivener Publishing LLC, John Wiley & Sons, Inc., 2021. 10.1002/9781119809036.ch1
[7] S. Sreevidya, S. Kirtana, Y.R. Katre and A.K. Singh, Application of biosurfactant during the process of biostimulation for effective bioremediation of a contaminated environment, in: Green sustainable process for chemical and environmental engineering and science, biosurfactants for the bioremediation of polluted environments, Inamuddin, C.O. Adetunji, (Eds.), pp 291 – 321, Elsevier, Amsterdam, Netherlands, 2021.
[8] M.M. Shameem, S.M. Sasikanth, R. Annamalai, R.G. Raman, A brief review on polymer nanocomposites and its applications, Mater. Today: Proc., 45(2021) 2536–2539.
[9] P.N. Catalano, R.G. Chaudhary, M.F. Desimone, P.L. Santo-Orihuela, A survey on analytical methods for green synthesized nanomaterials, Curr. Pharm. Biotechnol., 22(2021) 813–837.
[10] R.G. Chaudhary, A.K. Potbhare, P.B. Chouke, A.R. Rai, R.P. Mishra, M. Desimone, A. Abdala, Graphene-based nanomaterials and their nanocomposites with metal oxides: biosynthesis, electrochemical, photocatalytic and antimicrobial applications, Magnetic Oxides and Composites II, Materials Research Forum, 83(2020) 79–116. doi.10.21741/9781644900970-4.
[11] S. Wan, J. Peng, L. Jiang, Q. Cheng, Bioinspired graphene-based nanocomposites and their application in flexible energy devices, Adv. Mater., 28(2016) 7862–7898.
[12] N. Sumrith, S.M. Rangappa, R. Dangtungee, S. Siengchin, M. Jawaid, C.I. Pruncu, Biopolymers-based nanocomposites: properties and applications. in: Bio-based polymers and nanocomposites, M. Sanyang, M. Jawaid, (Eds.), pp. 255 – 272, Springer, Cham., 2019.
[13] M. Rajinipriya, F. Gauvin, M. Robert, S. Elkoun, M. Nagalakshmaiah, Structural properties of protein and their role in polymer nanocomposites. in: Bio-based polymers and nanocomposites, M. Sanyang, M. Jawaid, (Eds.), pp. 217 – 232, Springer, Cham., 2019.
[14] A.A. Essawy, Biorenewable Nanocomposites as highly adsorptive and potent photocatalyst materials for producing immaculate water, in: Biorenewable nanocomposite materials, vol. 2: desalination and wastewater remediation, D. Pathania, L. Singh, (Eds.), pp 259 – 280, Vol. 1411, ACS Symposium Series, American Chemical Society, 2022.
[15] F. Sher, M. Ilyas, M. Ilyas, U. Liaqat, E.C. Lima, M. Sillanpää, J.J. Klemeš, Biorenewable nanocomposites as robust materials for energy storage applications, in: Biorenewable nanocomposite materials, vol. 1: electrocatalysts and energy storage, D. Pathania, L. Singh, (Eds.), pp 197 – 224, Vol. 1410, ACS Symposium Series, American Chemical Society, 2022.
[16] R. Sharma, A. Kumari, Potential applications of biorenewable nanocomposite materials for electrocatalysis, energy storage, and wastewater treatment, in: Biorenewable nanocomposite materials, vol. 1: electrocatalysts and energy storage, D. Pathania, L. Singh, (Eds.), pp 25 – 46, Vol. 1410, ACS Symposium Series, American Chemical Society, 2022.
[17] S. Parida, D.P. Dutta, Nanostructured materials from biobased precursors for renewable energy storage applications, in: Biorenewable nanocomposite materials, vol. 1: electrocatalysts and energy storage, D. Pathania, L. Singh, (Eds.), pp 307 – 366, Vol. 1410, ACS Symposium Series, American Chemical Society, 2022.
[18] G. Yadav, M. Ahmaruzzaman, Food Packaging Applications for Biorenewable-Based Nanomaterials, in: Biorenewable nanocomposite materials, vol. 1: electrocatalysts and energy storage, D. Pathania, L. Singh, (Eds.), pp 257 – 267, Vol. 1410, ACS Symposium Series, American Chemical Society, 2022.
[19] A. Rani, A. Kumari, M. Thakur, K. Mandhan, M. Chandel, A. Sharma, Bionanocomposite synthesized from nanocellulose obtained from agricultural biomass as raw material, in: Biorenewable nanocomposite materials, vol. 1: electrocatalysts and energy storage, D. Pathania, L. Singh, (Eds.), pp 47 – 74, Vol. 1410, ACS Symposium Series, American Chemical Society, 2022.
[20] R. Jindal, K. Kaur, Khushbu, V. Vaid, Biorenewable nanocomposite: recent advances and its prospects in wastewater remediation, in: Biorenewable nanocomposite materials, vol. 2: desalination and wastewater remediation, D. Pathania, L. Singh, (Eds.), pp 313 – 340, Vol. 1411, ACS Symposium Series, American Chemical Society, 2022.
[21] A. Shafi, N. Bashar, J. Qadir, S. Sabir, M.Z. Khan, M.M. Rahman, Advanced Biopolymer-based nanocomposites: current perspective and future outlook in electrochemical and biomedical fields, in: Biorenewable nanocomposite materials, vol. 2: desalination and wastewater remediation, D. Pathania, L. Singh, (Eds.), pp 341 – 354, Vol. 1411, ACS Symposium Series, American Chemical Society, 2022.
[22] Nonrenewable Resources | National Geographic Society encyclopedia/nonrenewable-resources/
[23] R.M.G. Rajapakse, Depletion of nonrenewable energy resources, entropy crisis and nanotechnology solutions. J. Natal. Sci. Found., 35(2007) 59–61.
[24] Z. Ayazi, Application of nanocomposite-based sorbents in microextraction techniques: a review, Analyst., 142(2017) 721–739.
[25] P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Mater. Res., 12(2009) 1–39.
[26] R. Paul, L. Dai, Interfacial aspects of carbon composites, Compos. Interfaces, 25(2018) 539–605.
[27] V.T. Rathod, J.S. Kumar, A. Jain, Polymer and ceramic nanocomposites for aerospace applications, Appl. Nanosci.,7(2017) 519–548.
[28] M.G. Romero, R. Aguado, A. Moral, C. Brindley, M. Ballesteros, From traditional paper to nanocomposite films: analysis of global research into cellulose for food packaging, Food Packag. Shelf Life, 31(2022) 100788.
[29] P. Wang, N. Li, J. Li, W.Q. Chen, Metal-energy nexus in the global energy transition calls for cooperative actions, in: The material basis of energy transitions, A. Bleicher, A. Pehlken, (Eds.), pp 27 – 47, Elsevier, London, 2020.
[30] N. Saba, M. Jawaid, M. Asim, Nanocomposites with nanofibers and fillers from renewable resources, in: Green composites for automotive applications, part III: nanomaterials and additive manufacturing composites, Woodhead publishing series in composites science and engineering, G. Koronis, A. Silva, (Eds.), pp 145 – 170, Elsevier, UK. 2019.
[31] S. Sreevidya, S. Kirtana, Y.R. Katre, J. Singh, A.K. Singh, M. Aleksandrova, R. Khenata, Green nanostructures synthesis and spectroscopic characterizations, in: Nanometric spectrometric application, K. Pal, (Eds.), pp 103 – 136, Jenny Stanford Publishing, NY, 2021.
[32] N.C. Loureiro, J.L. Esteves, Green composites in automotive interior parts: a solution using cellulosic fibers, in: Green composites for automotive applications, Part II: thermosetting and thermoplastic materials for structural applications, Woodhead publishing series in composites science and engineering, G. Koronis, A. Silva, (Eds.), pp 81 – 97, Elsevier, UK, 2019.
[33] R. Chakraborty, A. Asthana, A.K. Singh, R. Verma, S. Sreevidya, S. Yadav, S.A.C. Carabineiro, Md.A.B.H. Susan, Chicken feathers derived materials for the removal of chromium from aqueous solutions: kinetics, isotherms, thermodynamics and regeneration studies, J. Dispers. Sci. Technol., 43(2020) 446–460.
[34] M. Nagalakshmaiah, S. Afrin, R.P. Malladi, S. Elkoun, M. Robert, M.A. Ansari, A. Svedberg, Z. Karim, Biocomposites: present trends and challenges for the future, in: Green composites for automotive applications, part III: nanomaterials and additive manufacturing composites, Woodhead publishing series in composites science and engineering, G. Koronis, A. Silva, (Eds.), pp 81 – 97, Elsevier, UK, 2019. s10.1016/B978-0-08-102177-4.00009-4
[35] H. Abdellaoui, R. Bouhfid, A.K. Qaiss, Preparation of bionanocomposites and bionanomaterials from agricultural wastes, in: Cellulose-reinforced nanofibre composites, production, properties and applications, Woodhead publishing series in composites science and engineering, M. Jawaid, S. Boufi, A. Khalil H.P.S., (Eds.), pp 341 – 371, Elsevier, UK, 2017.
[36] J. Jampílek, K. Kráľová, Preparation of nanocomposites from agricultural waste and their versatile applications, in: Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems, micro and nano technologies, K.A. Abd-Elsalam, (Eds.), pp 51 – 98, Elsevier, Amsterdam, Netherland, 2020.
[37] P.S. Kumar, E. Gunasundari, Nanocomposites: recent trends and engineering applications, NHC, 20(2018) 65–80.
[38] S.P. Cestari, D.F.S. Freitas, D.C. Rodrigues, L.C. Mendes, Recycling processes and issues in natural fiber-reinforced polymer composites, in: Green composites for automotive applications, Part IV: life cycle assessment and risk analysis, Woodhead publishing series in composites science and engineering, G. Koronis, A. Silva, (Eds.), pp 285 – 299, Elsevier, UK, 2019.
[39] B. Sharma, P. Malik, P. Jain, Biopolymer reinforced nanocomposites: a comprehensive review, Mater. Today Commun., 16(2018) 353–363.
[40] N.A.S. Abdullah, Z. Mohamad, Z.I. Khan, M. Jusoh, Z.Y. Zakaria, N. Ngadi, Alginate based sustainable films and composites for packaging: a review, Chem. Eng. Trans., 83(2021) 271–276.
[41] N. Basavegowda, K.H. Baek, Advances in functional biopolymer-based nanocomposites for active food packaging applications, Polymers, 13(2021) 4198.
[42] P. Gupta, D. Kumar, M.A. Quraishi, O. Parkash, Metal matrix nanocomposites and their application in corrosion control, in: Advances in nanomaterials, advanced structured materials, M. Husain and Z.H. Khan (Eds.), 79, pp 231 – 246, Springer India, 2016.
[43] P.S.S.R. Kumar, P.M. Mashinini, S.J. Alexis, Metal matrix nanocomposites in: Nanotechnology in the automotive industry, micro and nano technologies, H. Song, T.A. Nguyen, G. Yasin, N.B. Singh, R.K. Gupta, (Eds.), pp 199 – 213, Elseveir, Amsterdam, Netherland, 2022.
[44] S. Sreevidya, S. Kirtana, Y.R. Katre, A.K. Singh, Nanomaterials for environmental hazard: analysis, monitoring, and removal in: Nanomaterials: in bionanotechnology: fundamentals and applications, R. P. Singh, K.R.B. Singh (Eds.) pp 159 – 188, First Edition, Boca Raton, CRC-Press, 2021.
[45] P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Mat. Res., 12(2009) 1–39.
[46] R.K. Mishra, P. Mishra, K. Verma, A. Mondal, R.G. Chaudhary, M.M. Abolhasani, Loganathan, S., Electrospinning production of nanofibrous membranes, Envirn. Chem. Letter, 17(2019) 767–800.
[47] Y.S. Fu, J. Li, J. Li, Metal/Semiconductor nanocomposites for photocatalysis: fundamentals, structures, applications and properties, Nanomaterials, 9(2019) 359.
[48] I.A. Shurygina, M.G. Shurygin, B.G. Sukhov, Nanobiocomposites of metals as antimicrobial agents, in: Antibiotic resistance, mechanisms and new antimicrobial approaches, K. Kon, M. Rai. (Eds.), pp 167 – 186, Elseveir, UK, 2016.
[49] R. Pachaiappan, S. Rajendran, P.L. Show, K. Manavalan, M. Naushad, Metal/metal oxide nanocomposites for bactericidal effect: a review, Chemosphere, 272(2021) 128607.
[50] S.J. Owonubi, N.M. Malima, N. Revaprasadu, Metal oxide–based nanocomposites as antimicrobial and biomedical agents, in: Antibiotic materials in healthcare, V. Kokkarachedu, V. Kanikireddy, R. Sadiku, (Eds.), pp 287 – 323, Elsevier, UK, 2020.
[51] M.H. Malakooti, M.R. Bockstaller, K. Matyjaszewski, C. Majidi, Liquid metal nanocomposites, Nanoscale Adv., 2(2020) 2668–2677.
[52] H. Xie, J. Wang, K. Ithisuphalap, G. Wu, Q., Li, Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels, J. Energy Chem., 26(2017) 1039–1049.
[53] N.A. Luechinger, R.N. Grass, E.K. Athanassiou, W.J. Stark, Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals, Chem. Mater., 22(2010) 155–160.
[54] N.M.E. Shafai, M.E.E. Khouly, M.E. Kemary, M.S. Ramadana, M.S. Masoud, Graphene oxide–metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye, RSC Adv., 8(2018) 13323.
[55] S.E. Shin, H.J. Choi, J.Y. Hwang, D.H. Bae, Strengthening behavior of carbon/metal nanocomposites, Sci. Rep., 5(2015) 16114.
[56] D. Li, J. Barrington, S. James, D. Ayre, M. Słoma, M.F. Lin, H.Y. Nezhad, Electromagnetic field controlled domain wall displacement for induced strain tailoring in BaTiO3‑epoxy, nanocomposite, Sci. Rep., 12(2022) 7504.
[57] K. Byerly, P.R. Ohodnicki, S.R. Moon, A.M. Leary, V. Keylin, M.E. Mchenry, S. Simizu, R. Beddingfield, Y. Yu, G. Feichter, R. Noebe, R. Bowman, S. Bhattacharya, Metal amorphous nanocomposite (MANC) alloy cores with spatially tuned permeability for advanced power magnetics applications, JOM, 70(2018) 879–891.
[58] R. Eisavi, A. Karimi, CoFe2O4/Cu(OH)2 magnetic nanocomposite: an efficient and reusable heterogeneous catalyst for one-pot synthesis of β-hydroxy-1,4-disubstituted-1,2,3-triazoles from epoxides, RSC Adv., 9(2019) 29873.
[59] J. He, H. Yang, Y. Zhang, J. Yu, L. Miao, Y. Song, L. Wang, Smart nanocomposites of Cu-hemin metal-organic frameworks for electrochemical glucose biosensing, Sci. Rep., 6(2016) 36637.
[60] Z. Li, J. Lyu, M. Ge, Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation, J. Mater. Sci., 53(2018) 15081–15095.
[61] J. Yang, H. Zhang, B. Chen, H. Tang, C. Li, Z. Zhang, Fabrication of the g-C3N4/Cu nanocomposite and its potential for lubrication applications, RSC Adv., 5(2015) 64254–64260.
[62] T. Wu, W. Cai, P. Zhang, X. Song, L. Gao, Cu–Ni@SiO2 alloy nanocomposites for methane dry reforming catalysis, RSC Adv., 3(2013) 23976.
[63] A.K. Sasmal, S. Dutta, T. Pal, A ternary nanocomposite Cu2O-Cu-CuO: a catalyst for intriguing activity. Dalton Trans., 45(2016) 3139–3150.
[64] N. Alizadeh, A. Salimi, T.K. Sham, CuO/Cu-MOF nanocomposite for highly sensitive detection of nitricoxide released from living cells using an electrochemical microfluidic device, Microchim. Acta., 188(2021) 240.
[65] L. Xu, C. Srinivasakannan, J. Peng, L. Zhang, D. Zhang, Synthesis of Cu-CuO nanocomposite in microreactor and its application to photocatalytic degradation, J. Alloys Compd., 695(2017) 263–269. 10.1016/j.jallcom.2016.10.195
[66] L. Shabnam, S.N. Faisal, A.K. Roy, E. Haque, A.I. Minett, V.G. Gomes, Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food, Food Chem., 221(2017) 751–759.
[67] R. Jahanshahi, A. Mohammadi, M. Doosti, S. Sobhani. J.M. Sansano, ZnCo2O4/g-C3N4/Cu nanocomposite as a new efficient and recyclable heterogeneous photocatalyst with enhanced photocatalytic activity towards the metronidazole degradation under the solar light irradiation, Environ. Sci. Pollut. Res., 9(2022) 65043–65060.
[68] Vidya, L. Mandal, B. Verma, P.K. Patel, Review on polymer nanocomposite for ballistic & aerospace applications, Mat. Today: Proc., 26(2020) 3161–3166.
[69] S.K. Hubadillah, Z.S. Tai, M.H.D. Othman, Z. Harun, M.R. Jamalludin, M.A. Rahman, J.J. Ahmad, F. Ismail, Hydrophobic ceramic membrane for membrane distillation: a mini review on preparation, characterization, and applications, Sep. Purif. Technol., 217(2019) 71–84.
[70] A.M.K. Kirubaharan, P. Kuppusami, Corrosion behavior of ceramic nanocomposite coatings at nanoscale, in: Corrosion protection at the nanoscale micro and nano technologies, S. Rajendran, T.ANH. Nguyen, S. Kakooie, M. Yeganeh, Y. Li, (Eds.), pp 295 – 314, Elseveir, Amsterdam, Netherlands, 2020.
[71] M.S. Hasnain, S.A. Ahmad, M.A. Minhaj, T.J. Ara, A.K. Nayak, Nanocomposite materials for prosthetic devices, in: Applications of nanocomposite materials in orthopedics, Woodhead publishing series in biomaterials, Inamuddin, A.M. Asiri, A. Mohammad, (Eds.), pp 127 – 144. Elsevier, UK, 2019.
[72] J.D.R. Selvam, I. Dinaharan, R.S. Rai, Matrix and reinforcement materials for metal matrix composites, in: Encyclopedia of materials: composites, vol 2, pp 615 – 639, 2021. 10.1016/B978-0-12-803581-8.11890-9
[73] K. Niihara, A. Nakahira, T. Sekino, New nanocomposite structural ceramics, Mat. Res. Soc. Symp. Proc., 286(1992) 405–412.
[74] P. Palmero, Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods, Nanomaterials, 5(2015) 656–696.
[75] H. Porwal, R. Saggar, Ceramic matrix nanocomposites, in: Reference module in materials science and materials engineering, comprehensive composite materials II, P.W.R. Beaumont, C.H. Zweben, (Eds.), volume 6, pp 138 – 161, Elseveir, Amsterdam, Netherlands, 2018.
[76] B. Kumar, Ceramic nanocomposites for energy storage and power generation, in: Ceramic nanocomposites, Woodhead publishing series in composites science and engineering, R. Banerjee, I. Manna, (Eds.), pp 509 – 529, Elsevier, UK, 2013.
[77] A. Tarafder, A.R. Molla, B. Karmakar, Advanced glass-ceramic nanocomposites for structural, photonic, and optoelectronic applications, in: Glass nanocomposites, synthesis, properties and applications, B. Karmakar, K. Rademann, A.L. Stepanov, (Eds.), pp 299 – 338, Elsevier, UK, 2016.
[78] N.R. Bose, Thermal shock resistant and flame retardant ceramic nanocomposites, in: Ceramic nanocomposites, Woodhead publishing series in composites science and engineering, R. Banerjee, I. Manna, (Eds.), pp 3 – 50, Elsevier, UK, 2013.
[79] B. Karmakar, Fundamentals of glass and glass nanocomposites, in: Glass nanocomposites, synthesis, properties and applications, B. Karmakar, K. Rademann, A.L. Stepanov, (Eds.), pp 3 – 53, Elsevier, UK, 2016.
[80] G.G. Kumar, Zeolites and composites, in: Nanomaterials and nanocomposites: zero- to three-dimensional materials and their composites, P.M. Visakh, M. José, M. Morlanes, (Eds.), pp 187 – 221, Wiley-VCH Verlag GmbH & Co. KGaA, 2016.
[81] C. Li, W. Sun, Z. Lu, X. Ao, C. Yang, S. Li, Systematic evaluation of TiO2-GO modified ceramic membranes for water treatment: retention properties and fouling mechanisms, Chem. Eng. J., 378(2019) 122138.
[82] N. Choudhary, V.K. Yadav, K.K. Yadav, A.I. Almohana, S.F. Almojil, G. Gnanamoorthy, D.H. Kim, S. Islam, P. Kumar, B.H. Jeon, Application of green synthesized MMT/Ag nanocomposite for removal of methylene blue from aqueous solution, Water, 13(2021) 3206.
[83] F.S. Sangsefidi, M.S. Niasari, Fe2O3–CeO2 ceramic nanocomposite oxide: characterization and investigation of the effect of morphology on its electrochemical hydrogen storage capacity, ACS Appl. Energy Mater., 1(2018) 4840–4848. doi. 10.1021/acsaem.8b00907
[84] D. Zou, Y. Yi, Y. Song, D. Guan, M. Xu, R. Ran, W. Wang, W. Zhou, Z. Shao, BaCe0.16Y0.04Fe0.8O3-δ nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures, J. Mater. Chem. A, 10(2022) 5381–5390.
[85] M.A. Rezvani, M. Hadi, H. Rezvani, Synthesis of new nanocomposite based on ceramic and heteropolymolybdate using leaf extract of aloe vera as a high-performance nanocatalyst to desulfurization of real fuel, Appl. Organomet. Chem., 35(2021) 1-15.
[86] Q. Chen, R. Zhu, L. Deng, L. Ma, Q. He, J. Du, H. Fu, J. Zhang, A. Wang, One-pot synthesis of novel hierarchically porous and hydrophobic Si/SiOx composite from natural palygorskite for benzene adsorption, Chem. Eng. J., 378(2019) 122131.
[87] N.Y. Soylu, A. Akturk, O. Kabak, M.E. Taygun, F.K. Guler, S. Küçükbayrak, TiO2 nanocomposite ceramics doped with silver nanoparticles for the photocatalytic degradation of methylene blue and antibacterial activity against Escherichia coli, Eng. Sci. Technol., (2022) 101175. In Press, Corrected Proof,
[88] X. Wang, Y. Li, H. Yu, F. Yang, C.Y. Tang, X. Quan, Y. Dong, High-flux robust ceramic membranes functionally decorated with nano-catalyst for emerging micro-pollutant removal from water, J. Membr. Sci., 611(2020) 118281.
[89] N.A. Safronova, O.S. Kryzhanovska, M.V. Dobrotvorska, A.E. Balabanov, A.V. Tolmachev, R.P. Yavetskiy, S.V. Parkhomenko, R. Brodskii, V.N. Baumer, D.Y. Kosyanov, O.O. Shichalin, E.K. Papynov, J. Li, Influence of sintering temperature on structural and optical properties of Y2O3–MgO composite SPS ceramics, Ceram. Int., 46(2020) 6537–6543,
[90] B. Zhang, W. Song, L. Wei, Y. Xiu, H. Xu, D.B. Dingwell, H. Guo, Novel thermal barrier coatings repel and resist molten silicate deposits, Scr. Mater., 163(2019) 71–76.
[91] X.F. Zhang, G. Harley, L.C.D. Jonghe, Co-continuous metal−ceramic nanocomposites, Nano Lett., 5(2005) 1035–1037.
[92] M.Z.A. Qureshi, S. Bilal, M.Y. Malik, Q. Raza, E.S.M. Sherif, Y.M. Li, Dispersion of metallic/ceramic matrix nanocomposite material through porous surfaces in magnetized hybrid nanofluids flow with shape and size effects, Sci. Rep., 11(2021) 12271.
[93] A. Carvalho, M. Marinova, N. Batalha, N.R. Marcilio, A.Y. Khodakov, V.V. Ordomsky, Design of nanocomposites with cobalt encapsulated in the zeolite micropores for selective synthesis of isoparaffins in Fischer–Tropsch reaction, Catal. Sci. Technol., 7(2017) 5019–5027.
[94] A. Rathi, S. Basu, S. Barman, Efficient eradication of antibiotic and dye by C-dots@zeolite nanocomposites: performance evaluation, and degraded products analysis, Chemosphere, 298(2022) 134260.
[95] I.I. Ivanova, E.E. Knyazevaa, Micro–mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications, Chem. Soc. Rev., 42(2013) 3671–3688.
[96] K. Shameli, M.B. Ahmad, M. Zargar, W.M.Z.W. Yunus, N.A. Ibrahim, Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity, Int. J. Nanomedicine, 6(2011) 331–341.
[97] V. Hovhannisyan, K. Siposova, A. Musatov, S.J. Chen, Development of multifunctional nanocomposites for controlled drug delivery and hyperthermia, Sci. Rep., 11(2021) 5528.
[98] A.A. Alswata, M.B. Ahmad, N.M.A. Hada, H.M. Kamari, M.Z.B. Hussein, N.A. Ibrahim, Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water, Results Phys., 7(2017) 723–731. doi; 10.1016/j.rinp.2017.01.036
[99] T. Shubair, O. Eljamal, A. Tahara, Y. Sugihara, N. Matsunaga, Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters, J. Mol. Liq., 288(2019) 111026.
[100] M. Mansouri, Y. Ahmadi, Applications of zeolite‑zirconia‑copper nanocomposites as a new asphaltene inhibitor for improving permeability reduction during CO2 flooding, Sci. Rep., 12(2022) 6209.
[101] H. Jahangirian, R.R. Moghaddam, N., Jahangirian, B., Nikpey, S. Jahangirian, N. Bassous, B. Saleh, K. Kalantari, T.J. Webster, Green synthesis of zeolite/Fe2O3 nanocomposites: toxicity & cell proliferation assays and application as a smart iron nanofertilizer, Int. J. Nanomedicine, 15(2020) 1005–1020.
[102] M.N. Chong, Z.Y. Tneu, P.E. Poh, B. Jin, R. Aryal, Synthesis, characterisation and application of TiO2–zeolite nanocomposites for the advanced treatment of industrial dye wastewater, J. Taiwan Inst. Chem. Eng., 000(2014) 1–9.
[103] N.B.T. Tran, N.B. Duong, N.L. Le, Synthesis and characterization of magnetic Fe3O4/Zeolite NaA nanocomposite for the adsorption removal of methylene blue potential in wastewater treatment, J. Chem., (2021) 1–14.
[104] G.V. Kravchenko, E.N. Domoroshchina, G.M. Kuz’micheva, A.A. Gaynanova, S.V. Amarantov, L.V. Pirutko, A.M. Tsybinsky, N.V. Sadovskaya, E.V. Kopylova, Zeolite–titanium dioxide nanocomposites: preparation, characterization, and adsorption properties, Nanotechnologies in Russia, 11(2016) 579–592.
[105] E.I. Akpan, X. Shen, B. Wetzel, K. Friedrich, Design and synthesis of polymer nanocomposites, in: Polymer composites with functionalized nanoparticles, synthesis, properties, and applications, micro and nano technologies, K. Pielichowski, T.M. Majka, (Eds.) pp 47 – 83, Elsevier, Amsterdam, Netherlands, 2019.
[106] V. LazićJovan, M. Nedeljković, Organic–inorganic hybrid nanomaterials: synthesis, characterization, and application, in: Nanomaterials synthesis, design, fabrication and applications, micro and nano technologies, Y.B. Pottathara, N. Kalarikkal, Y. Grohens, S. Thomas, V. Kokol, (Eds.), pp 419 – 449, Elsevier, Amsterdam, Netherlands, 2019,
[107] N. Karak, Fundamentals of nanomaterials and polymer nanocomposites, in: Nanomaterials and polymer nanocomposites, raw materials to applications, N. Karak (Eds.), pp 1 – 45, Elsevier, Amsterdam, Netherlands, 2019.
[108] S.H. Zaferani, Introduction of polymer-based nanocomposites, in: Polymer-based nanocomposites for energy and environmental applications, Woodhead publishing series in composites science and engineering, M. Jawaid, M.M. Khan, (Eds.), pp 1 – 25, Elsevier, UK, 2018.
[109] A. Sheikhi, Emerging cellulose-based nanomaterials and nanocomposites, in: Nanomaterials and polymer nanocomposites, raw materials to applications, N. Karak (Eds.), pp 307 – 351, Elsevier, Amsterdam, Netherlands, 2019.
[110] K. Yu, N. Kumar, J. Roine, M. Pesonen, A. Ivaska, Synthesis and characterization of polypyrrole/H-Beta zeolite nanocomposites, RSC Adv., 4(2014) 33120–33126.
[111] H.L. Frisch, H. Song, J. Ma, M. Rafailovich, S. Zhu, N.L. Yang, X. Yan, Antiferromagnetic pairing in polyaniline salt−zeolite nanocomposites, J. Phys. Chem. B, 105(2001) 11901–11905.
[112] D. Bendahou, A. Bendahou, Y. Grohens, H. Kaddami, New nanocomposite design from zeolite and poly(lactic acid), Ind. Crops Prod., 72(2015) 107-118.
[113] J.S. Son, E.J. Hwang, L.S. Kwon, Y.G. Ahn, B.K. Moon, J. Kim, D.H. Kim, S.G. Kim, S.Y. Lee, Antibacterial activity of propolis-embedded zeolite nanocomposites for implant application, Materials, 14(2021) 1193. doi; 10.3390/ma14051193
[114] H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Colloid Inter. Sci., 393(2017) 445–451.
[115] S. Gong, H. Chen, X. Zhou, S. Gunasekaran, Synthesis and applications of MANs/poly(MMA-co-BA) nanocomposite latex by miniemulsion polymerization, R. Soc. Open Sci. 4(2017) 170844.
[116] V. Dhapte, N. Gaikwad, P.V. More, S. Banerjee, V.V., Dhapte, S. Kadam, P.K. Khanna, Transparent ZnO/polycarbonate nanocomposite for food packaging application, Nanocomposites, 1(2015) 106–112.
[117] M. Kermani, H. Sereshti, N. Nikfarjam, Application of a magnetic nanocomposite of cross-linked poly(styrene/divinylbenzene) as an adsorbent for the magnetic dispersive solid phase extraction-dispersive liquid–liquid microextraction of atrazine in soil and aqueous samples, Anal. Methods, 12(2020) 1834–1844.
[118] S.Y. Song, M.S. Park, D. Lee, J.W. Lee, J.S. Yun, Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography, Mater. Design., 180(2019) 107960.
[119] X. Zheng, L. Wang, Q. Pei, S. He, S. Liu, Z. Xie, Metal-Organic frameworks@ porous organic polymers nanocomposite for photodynamic therapy, Chem. Mater., 29(2017) 2374 – 2381.
[120] M. Ramesh, M. Muthukrishnan, Biodegradable polymer blends and composites for food-packaging applications, in: Biodegradable polymers, blends and composites, Woodhead publishing series in composites science and engineering, S. Mavinkere, R.J. Parameswaranpillai, S. Siengchin, M. Ramesh, (Eds.), pp 693 – 716, Elseveir, UK, 2022.
[121] Z. Zhang, O. Ortiz, R. Goyal, J. Kohn, Biodegradable polymers, in: Handbook of polymer applications in medicine and medical devices, plastics design library, K. Modjarrad, S. Ebnesajjad, (Eds.), pp 303 – 335, Elsevier, Oxford, USA, 2014.
[122] P. Bhagabati, Biopolymers and biocomposites-mediated sustainable high-performance materials for automobile applications, in: Sustainable nanocellulose and nanohydrogels from natural sources, micro and nano technologies, F. Mohammad, H.A. Al-Lohedan, M. Jawaid, (Eds.), pp 197 – 216, Elsevier, Amsterdam, Netherlands, 2020.
[123] G. Lavriˇc, A. Oberlintner, I. Filipova, U. Novak, B. Likozar, U.V. Brodnjak, Functional nanocellulose, alginate and chitosan nanocomposites designed as active film packaging materials, Polymers, 13(2021) 2523.
[124] M. Mohammadpour, H. Samadian, N. Moradi, Z. Izadi, M. Eftekhari, M. Hamidi, A. Shavandi, A. Quéro, E. Petit, C. Delattre, R. Elboutachfaiti, Fabrication and characterization of nanocomposite hydrogel based on alginate/nano-hydroxyapatite loaded with linum usitatissimum extract as a bone tissue engineering scaffold, Mar. Drugs, 20(2020) 20.
[125] A.M.F. Lima, M.D.F. Lima, O.B.G. Assis, A. Raabe, H.C. Amoroso, V.A.D.O. Tiera, M.B.D. Andrade, M.J. Tiera, Synthesis and physicochemical characterization of multiwalled carbon nanotubes/hydroxamic alginate nanocomposite scaffolds, J. Nanomater., (2018) 1–12.
[126] G. Supanakorn, N. Varatkowpairote, S. Taokaew, M. Phisalaphong, Alginate as dispersing agent for compounding natural rubber with high loading microfibrillated cellulose, Polymers, 13(2021) 468.
[127] B. Piluharto, U. Salamah, D. Indarti, Preparation of alginate/nanocellulose nanocomposite for protein adsorption, Macromol. Symp., 391(2020) 1900141.
[128] F. Aziz, M.E. Achaby, A. Lissaneddine, K. Aziz, N. Ouazzani, R. Mamouni, L. Mandi, Composites with alginate beads: a novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots, Saudi J. Biol. Sci., 27(2020) 2499–2508.
[129] M. Esmat, A.A. Farghali, M.H. Khedr, I.M.E. Sherbiny, Alginate-based nanocomposites for efficient removal of heavy metal ions, Int. J. Biol. Macromol., 102(2017) 272–283.
[130] R.L. Alexa, R. Ianchis, D. Savu, M. Temelie, B. Trica, A. Serafim, G.M. Vlasceanu, E. Alexandrescu, S. Preda, H. Iovu, 3D Printing of alginate-natural clay hydrogel-based nanocomposites, Gels, 7(2021) 211.
[131] S. Yadav, A. Asthana, A.K. Singh, R. Chakraborty, S. Sreevidya, M.A.B.H. Susan, S.A.C. Carabineiro, Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: isotherm, kinetics and regeneration studies, J. Hazard. Mater., 409(2021) 124840.
[132] S. Yadav, A. Asthana, R. Chakraborty, B. Jain, A.K. Singh, S.A.C. Carabineiro, M.A.B.H. Susan, Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer, nanocomposite, Nanomaterials, 10(2020) 170.
[133] Yadav, A. Asthana, A.K. Singh, R. Chakraborty, S.S Vidya, A. Singh, S.A.C. Carabineiro, Methionine-functionalized graphene oxide/sodium alginate bio-polymer nanocomposite hydrogel beads: synthesis, isotherm and kinetic studies for an adsorptive removal of fluoroquinolone antibiotics, Nanomaterials, 11(2021) 568.
[134] S. Lilhare, S.B. Mathew, A.K. Singh, S. Sreevidya, A simple spectrophotometric study of adsorption of Hg(II) on glycine functionalised magnetic nanoparticle entrapped alginate beads, Int. J. Environ. Anal. Chem., 2021.
[135] H. Li, M. Kruteva, M. Dulle, Z. Wang, K. Mystek, W. Ji, T. Pettersson, L. Wågberg, Understanding the drying behavior of regenerated cellulose gel beads: the effects of concentration and nonsolvents, ACS Nano, 16(2022) 2608−2620.
[136] W. Kargupta, R. Seifert, M. Martinez, J. Olson, J. Tanner, W. Batchelor, Preparation and benchmarking of novel cellulose nanopaper, Cellulose, 29(2022) 4393–4411.,
[137] A.D. Štiglic, F. Gürer, F. Lackner, D. Bračič, A. Winter, L. Gradišnik, D. Makuc, R. Kargl, I. Duarte, J. Plavec, U. Maver, M. Beaumont, K.S. Kleinschek, T. Mohan, Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility, iScience, 25(2022) 104263.
[138] S. Park, S.H. Kim, J.H. Kim, H. Yu, H.J. Kim, Y.H. Yang, H. Kim, Y.H. Kim, S.H. Ha, S.H. Lee, Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase, J. Mol. Catal. B: Enzym., 119(2015) 33–39.
[139] H.W. Kwak, M. Shin, H. Yun, K.H. Lee, Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions, Int. J. Mol. Sci., 17(2016) 1466.
[140] J. Lin, Y. Cheng, Z. Li, Y. Zheng, B. Xu, C. Lu, Synthesis of modified lignin as an antiplasticizer for strengthening poly(vinyl alcohol)–lignin interactions toward quality gel-spun fibers, ACS Appl. Polym., Mater., 4(2022) 1595–1607.
[141] X. Shen, Y. Xie, Q. Wang, X. Yi, J.L. Shamshina, R.D. Rogers, Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin, Cellulose, 26(2019) 4005–4019.
[142] L. Chen, Y. Shi, B. Gao, Y. Zhao, Y. Jiang, Z., Zha, W. Xue, L. Gong, Lignin nanoparticles: green synthesis in a γ-valerolactone/water binary solvent and application to enhance antimicrobial activity of essential oils, ACS Sustainable Chem. Eng., 12(2019) 17.
[143] T. Luo, Y. Hao, C. Wang, W. Jiang, X. Ji, G. Yang, J. Chen, S. Janaswamy, G. Lyu, Lignin nanoparticles and alginate gel beads: preparation, characterization and removal of methylene blue, Nanomaterials, 12(2022) 176.
[144] S. Akbari, A. Bahi, A. Farahani, A.S. Milani, F. Ko, Fabrication and characterization of lignin/dendrimer electrospun blended fiber mats, Molecules, 26(2021) 518.
[145] J.L. Patarroyo, E. Fonseca, J. Cifuentes, F. Salcedo, J.C. Cruz, L.H. Reyes, Gelatin-graphene oxide nanocomposite hydrogels for kluyveromyces lactis encapsulation: potential applications in probiotics and bioreactor packings, Biomolecules, 11(2021) 922.
[146] M.A. Salami, F. Kaveian, M. Rafienia, S. Saber-Samandari, A. Khandan, M. Naeimi, Electrospun polycaprolactone/lignin based nanocomposite as a novel tissue scaffold for biomedical applications, J. Med. Sign. Sens., 7(2017) 228–238.
[147] M. Leonardi, G.M. Caruso, S.C. Carroccio, S. Boninelli, G. Curcuruto, M. Zimbone, M. Allegra, B. Torrisi, F. Ferlito, M. Miritello, Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers, Environ. Sci. Nano, 8(2021) 174.
[148] S. Sreevidya, S. Kirtana, Y.R. Katre, A. Kumar, A.K. Singh, Plant extract: isolation, purification, and applications of green nanomaterials stabilization, in: Green nanomaterials sustainable technologies and applications, K. Pal, (Eds.), New York, 1st Edition, Apple Academic Press, USA, pp 189 – 218, 2022.
[149] R. Chakraborty, A. Asthana, A.K. Singh, S. Yadav, M.A.B.H. Susan, S.A.C. Carabineiro, Intensified elimination of aqueous heavy metal ions using chicken feathers chemically modified by a batch method, J. Mol. Liq., 312(2020) 113475.
[150] T. Guha, G. Gopal, R. Kundu, A. Mukherjee, Nanocomposites for delivering agrochemicals: a comprehensive review, J. Agric. Food Chem., 68(2020), 3691–3702.
[151] Darwish, M.S.A., Mostafa, M.H., Al-Harbi, L.M., Polymeric nanocomposites for environmental and industrial applications, Int. J. Mol. Sci., 23(2023) 1023.
[152] E. Fortunati, F. Luzi, W. Yang, J.M. Kenny, L. Torre, P. Puglia, Bio-based nanocomposites in food packaging, in: Nanomaterials for food packaging materials, processing technologies, and safety issues, micro and nano technologies, M.Â.P.R. Cerqueira, J.M. Lagaron, L.M.P. Castro O.S. Vicente, (Eds.), pp 71 – 110, Elseveir, Amsterdam, Netherlands, 2018.
[153] S. Huang, X, Hong, M. Zhao, N. Liu, H. Liu, J. Zhao, L. Shao, W. Xue, H. Zhang, P. Zhud, R. Guo, Nanocomposite hydrogels for biomedical applications, Bioeng. Transl. Med., 7(2022) e10315.
[154] M. Sajjad, W. Lu, Covalent organic frameworks based nanomaterials: design, synthesis, and current status for supercapacitor applications: a review, J. Energy Storage, 39(2021) 102618.
[155] E.E. Okoro, R. Josephs, S.E. Sanni, Y. Nchila, Advances in the use of nanocomposite membranes for carbon capture operations, Int. J. Chem. Eng., (2021)22.
[156] M. Wei, Y. Gao, X. Li, M.J. Serpe, Stimuli-responsive polymers and their applications, Polym. Chem., 8(2017) 127.
[157] L. Camilli, M. Passacantando, Advances on sensors based on carbon nanotubes, Chemosensors, 6(2018) 62.
[158] J. Xiong, X. Cai, J. Ge, Enzyme–metal nanocomposites for antibacterial applications, Particuology, 64(2022) 134–139.
[159] T. Zhang, W. He, W. Zhang, T. Wang, P. Li, Z.M., Sun, X. Yu, Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries, Chem. Sci., 11(2020) 8686–8707.
[160] J. Yu, D., Wan, N., Geetha, K.M., Khawar, S. Jogaiah, M. Mujtaba, Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review, Carbohydr. Polym., 261(2021) 117904.
[161] L. Tamayo, M. Azócar, M. Kogan, A. Riveros, M. Páez, Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces, Mater. Sci. Eng. C, 69(2016) 1391–1409.
[162] G. Liao, J. Fang, Q. Li, S. Li, Z. Xu, B. Fang, Ag-Based nanocomposites: synthesis and applications in catalysis, Nanoscale, 11(2019) 7062–7096.
[163] A. Bhat, S. Budholiya, S.A. Raj, M.T.H. Sultan, D. Hui, D., A.U.M. Shah, S.N.A. Safri, Review on nanocomposites based on aerospace applications, Nanotechnol. Rev., 10(2021) 237–253.
[164] H. Xie, J. Wang, K. Ithisuphalap, G. Wu, Q. Li, Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels, J. Energy Chem., 26(2017) 1039–1049.
[165] E. Lizundia, M.H. Sipponen, L.G. Greca, M. Balakshin, B.L. Tardy, O.J. Rojas, D. Puglia, Multifunctional lignin-based nanocomposites and nanohybrids, Green Chem., 23(2021) 6698.
[166] R. Kaur, S.K. Bhardwaj, S. Chandna, K.Y. Kim, J. Bhaumik, Lignin-based metal oxide nanocomposites for UV protection applications: a review, J. Cleaner Prod., 317(2021) 128300.
[167] B. Wang, Y. Wan, Y. Zheng, X. Lee, T. Liu, Z. Yu, J. Huang, Y.S. Ok, J. Chen, B. Gao, Alginate-based composites for environmental applications: a critical review, Crit. Rev. Environ. Sci. Technol., 49(2018) 318–356.
[168] O. Faruk, D. Hosen, A. Ahmed, M.M. Rahman, Functional bionanomaterials—embedded devices for sustainable energy storage, in: Biorenewable nanocomposite materials, vol. 1: electrocatalysts and energy storage, D. Pathania, L. Singh, (Eds.), pp 1 – 23, Vol. 1410, ACS Symposium Series, American Chemical Society, 2022.
[169] M. Thakur, M. Chandel, A. Rani, A. Sharma, Introduction to biorenewable nanocomposite materials: methods of preparation, current developments, and future perspectives, in: Biorenewable nanocomposite materials, vol. 2: desalination and wastewater remediation, D. Pathania, L. Singh, (Eds.), pp 1 – 24, ACS Symposium Series Vol. 1411, American Chemical Society, 2022.
[170] G.C. Lavorato, R. Das, J.A. Masa, M.H. Phan, H. Srikanth, Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications, Nanoscale Adv., 3(2021) 867.