Applications of Artificial Intelligence in Polymer Manufacturing


Applications of Artificial Intelligence in Polymer Manufacturing

Satyansh Srivastava, Bhoomika Varshney, V.P. Sharma, Babra Ali3

Artificial Intelligence (AI) is creating an everlasting impact on science and benefiting in realizing new and revolutionary sustainable materials. The field of manufacturing polymers has witnessed more exponential growth than ever, and the credit entirely goes to the novel artificially intelligent machine learning strategies. Artificial Intelligence is progressing in the interdisciplinary field of improving the lifestyle and attaining sustainable development goals (SDGs). It may be transforming applications ranging from new materials to personalized medicine and precise sensor developments. Polymer informatics is an interdisciplinary field of research converging polymer science with computer science, information science, and machine learning, serving as a muse to transform the field of polymer manufacturing altogether. With the tremendous upsurge of data in science, data-driven strategies are being utilized in polymer informatics for better and more efficient development, design, and discovery of polymers. We have attempted to discuss the application of artificial intelligence in different sectors such as polymeric designing, the food industry, healthcare, cosmetics, and agricultural sustainable productivity.

Intelligence, Innovation, Machine Learning, Polymer, Sustainable

Published online , 18 pages

Citation: Satyansh Srivastava, Bhoomika Varshney, V.P. Sharma, Babra Ali3, Applications of Artificial Intelligence in Polymer Manufacturing, Materials Research Foundations, Vol. 147, pp 105-122, 2023


Part of the book on Application of Artificial Intelligence in New Materials Discovery

[1] Amisha, P. Malik, M. Pathania, V.K. Rathaur, Overview of artificial intelligence in medicine, J. Family Med Prim Care. 8 (2019) 2328-2331.
[2] What is Artificial Intelligence (AI)?
[3] O. Baloglu, S.Q. Latifi, A. Nazha, What is machine learning? Arch. Dis. Child. Educ. Pract. Ed. 107 (2021) 386-388.
[4] H. Shi, G. Cao, G. Ma, J. Duan, J. Bai, X. Meng, New progress in artificial intelligence algorithm research based on big data processing of IOT systems on intelligent production lines, Comput. Intell. Neurosci. (2022) 3283165.
[5] S. Bendifallah, A. Puchar, S. Suisse, L. Delbos, M. Poilblanc, P. Descamps, F. Golfier, C. Touboul, Y. Dabi, E. Daarai, Machine learning algorithms as a new screening approach for patients with endometriosis, Sci Rep. 12 (2022) 639.
[6] S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing, Chem Rev. 117 (2017) 10212-10290.
[7] A. Roda, A.A. Matias, A. Paiva, A.R.C. Duarte, Polymer science and engineering using deep eutectic solvents, Polymers (Basel) 11 (2019) 11050912.
[8] M.S.B. Reddy, D. Ponnamma, R. Choudhary, K.K. Sadasivuni, A comparative review of natural and synthetic biopolymer composite scaffolds, Polymers (Basel). 13 (2021) 1105.
[9] C.C. Cheng, D.J. Lee, Z.S. Liao, J.J. Huang, Stimuli-responsive single-chain polymeric nanoparticles towards the development of efficient drug delivery systems, Polym. Chem. 7 (2016) 6164-6169.
[10] Industry E, Industry H. How Industry 4.0 technologies are changing manufacturing.:1 19, 2021.
[11] Artificial Intelligence: Definition, Types. intelligence
[12] J. He, S.L. Baxter, J. Xu, X. Zhou, K. Zhang, The practical implementation of artificial intelligence technologies in medicine, Nat Med. 25 (2019) 30-36.
[13] D.A. Hashimoto, E. Witkowski, L. Gao, O. Meireles, G. Rosman, Artificial Intelligence in Anesthesiology: Current techniques, clinical applications, and limitations, Anesthesiology. 132 (2020) 379-394.
[14] A.A. Abonamah, M.U. Tariq, S. Shilbayeh, On the commoditization of artificial intelligence, Front. Psychol. 12 (2021) 696346.
[15] T. Jiang, J.L. Gradus, A.J. Rosellini, Supervised machine learning: A brief primer, Behav. Ther. 51 (2020) 675-687.
[16] J.A. Nichols, H.W.H. Chan, M.A.B. Baker, Machine learning: Applications of artificial intelligence to imaging and diagnosis, Biophys. Rev. 11 (2019) 111-118.
[17] S.T. Knox, S.J. Parkinson, C.Y.P. Wilding, R.A. Bourne, N.J. Warren, Autonomous polymer synthesis delivered by multi-objective closed-loop optimisation, Polym. Chem. 13 (2022) 1576-1585 .
[18] N. Patil, iMedPub Journals Polymer Synthesis Characterization and Commercialization. Published online 2018:1-2.
[19] F. Dong, S. Zhang, J. Zhu, J. Sun, The impact of the integrated development of AI and\ energy industry on regional energy industry: A Case of China, Int. J. Environ. Res. Public Health. 18 (2021) 8946.
[20] Patil N. iMedPub Journals Polymer Synthesis Characterization and Commercialization. Published online 2018:1-2.
[21] T. Davenport, R. Kalakota, The potential for artificial intelligence in healthcare, Future Healthc. J. 6 (2019) 94-98.
[22] M. Javaid, A. Haleem, R. Vaishya, S. Bahl, R. Suman, A. Vaish, Industry 4.0 technologies and their applications in fighting COVID-19 pandemic, Diabetes Metab. Syndr. 14 (2020) 419-422.
[23] D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia, R.K. Tekade, Artificial intelligence in\ drug discovery and development, Drug Discov. Today 26 (2021) 80-93.
[24] K.P. Tran, Artificial intelligence for smart manufacturing: Methods and applications, Sensors (Basel). 16 (2021) 5584.
[25] M. Mukhtarkhanov, A. Perveen, D. Talamona, Application of stereolithography based 3D printing technology in investment casting, Micromachines (Basel). 11 (2020) 946.
[26] S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and ] customized additive manufacturing, Chem Rev. 117 (2017) 10212-10290.
[27] L. Jingcheng, V.S. Reddy, W.A.D.M. Jayathilaka, A. Chinnappan, S. Ramakrishna, R. Ghosh, Intelligent polymers, fibers and applications, Polymers (Basel). 13 (2021) 1427.
[28] M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications, Chem. Soc. Rev. 41 (2012) 2545-2561.
[29] Z. Guo, J.J. Richardson, B. Kong, K. Liang, Nanobiohybrids: Materials approaches for bioaugmentation, Sci. Adv. 6 (2020) 0330.
[30] A. Zielińska, F. Carreiró, A.M. Oliveira, A. Neves, B. Pires, D.N. Venkatesh, A. Durazzo, M. Lucarini, P. Eder, A.M. Silva, A. Santini, E.B. Souto, Polymeric nanoparticles: Poduction, characterization, toxicology and ecotoxicology, Molecules 25 (2020) 3731.
[31] E.L. Scheller, P.H. Krebsbach, Gene therapy: Design and prospects for craniofacial regeneration, J. Dent. Res. 88 (2009) 585-596.
[32] S. Shaikh, M. Yaqoob, P. Aggarwal, An overview of biodegradable packaging in the food industry, Curr. Res. Food Sci. 4 (2021) 503-520.
[33] C.M. Carr, D.J. Clarke, A.D.W. Dobson, Microbial polyethylene terephthalate hydrolases:\ Current and future perspectives, Front. Microbiol. 11 (2020) 571265.
[34] S. Tanaka, K. Wakabayashi, K. Fukushima, S. Yukami, R. Maezawa, Y. Takeda, K. Tatsumi, Y. Ohya, A. Kuzuya, Intelligent, biodegradable, and self-healing hydrogels utilizing DNA quadruplexes, Chem. Asian J. 12 (2017) 2388-2392.
[35] A.E. Stoica, C. Chircov, A.M. Grumezescu, Hydrogel dressings for the treatment of burn wounds: An up-to-date overview, Materials (Basel). 13 (2020) 2853.
[36] W. Xin, Y. Gao, B. Yue, Recent advances in multifunctional hydrogels for the treatment of\ osteomyelitis, Front. Bioeng. Biotechnol. 10 (2022) 865250.
[37] J. Muncke, Tackling the toxics in plastics packaging, PLOS Biol. 19 (2021) 3000961.
[38] L. Mederake, D. Knoblauch, Shaping EU plastic policies: The role of public health vs. environmental arguments, Int. J. Environ. Res. Public Health. 16 (2019) 3928.
[39] K.G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine learning in agriculture: A review, Sensors (Basel). 18 (2018) 2674.
[40] S. Nabwire, H.K. Suh, M.S. Kim, I. Baek, B.K. Cho, Review: Application of artificial intelligence in phenomics, Sensors (Basel). 21 (2021) 4363.
[41] Y.F. Wang, T. Sekine, Y. Takeda, K. Yokosawa, H. Matsui, D. Kumaki, T. Shiba, T. Nishikawa, S. Tokito, Fully printed PEDOT:PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring, Sci. Rep. 10 (2020) 2467.
[42] N. Ahmed, M.S. Abbasi, F. Zuberi, W. Qamar, M.S.B. Halim, A. Maqsood, M.K. Alam, Artificial intelligence techniques: Analysis, application, and outcome in dentistry-a systematic review, Biomed. Res. Int. (2021) 9751564.
[43] N.R. Mavani, J.M. Ali, S. Othman, M.A. Hussain, H. Hashim, N.A. Rahman, Application of artificial intelligence in the food industry-a guideline, Food Eng. Rev. 14 (2022) 134-175.
[44] T. Jarvis, D. Thornburg, A.M. Rebecca, C.M. Teven, Artificial intelligence in plastic surgery: Current applications, future directions, and ethical implications, Plast. Reconstr. Surg. Glob. Open. 8 (2020) e3200.
[45] A.H.A. de Hond, A.M. Leeuwenberg, L. Hooft, I.M.J. Kaant, S.W.J. Nijman, H.J.A.V. Os,\ J.J. Ardoom, T.P.A. Debray, E. Schuit, M.V. Smeden, J.B. Reitsma, E.W. Steyerberg, N.H. Chavennes, K.G.M. Moons, Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: A scoping review, NPJ Digit. Med. 2 (2022) 1-13.
[46] L.B. Thomas, S.M. Mastorides, N.A. Viswanadhan, C.E. Jakey, A.A. Borkowski, Artificial intelligence: Review of current and future applications in medicine, Fed. Pract. 38 (2021) 527-538.
[47] UNESCO, Artificial intelligence-towards a humanistic approach.
[48] UNESCO, Ethics of Artificial Intelligence.
[49] Advanced Polymer Coatings, How AI is influencing the shipping industry today.
[50] Data Flair, Pros and Cons of Artificial Intelligence – A Threat or a Blessing?.
[51] TechVidvan, Advantages and Disadvantages of Artificial Intelligence.