Numerical and experimental investigation of a backward extrusion process for forming geared components from coil

Numerical and experimental investigation of a backward extrusion process for forming geared components from coil


download PDF

Abstract. Stricter political regulations, increasing ecological awareness of society as well as the pursuit for higher performance of components motivate lightweight construction. Functional integration is one way to realize lightweight design, resulting in increased demands on component geometry. Sheet-bulk metal forming (SBMF) offers the potential to enable an economic and ecological production of functional components through short process chains. SBMF from coil also provides additional advantages regarding high output quantity and short cycle times. However, the industrially application of SBMF from coil is limited due to high tool load and coil-specific challenges like an anisotropic material flow, which negatively affects the part accuracy. In this study, a backward extrusion process from coil for forming functional components with gearing is investigated. Therefore, a numerical process model was built and validated based on experimental results. In order to generate a profound process understanding, a combined numerical-experimental approach was chosen for a fundamental process analysis. The influence of the semi-finished product geometry was investigated by forming rotationally symmetric, pre-cut blanks and coil material. The application of the different sheet geometries was compared based on component- and process-side target quantities. The results indicate an anisotropic material flow as a coil-specific challenge, which leads to a direction-dependent component forming.

Sheet-Bulk Metal Forming, Extrusion, Cold Forming

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: LEICHT Miriam, HENNEBERG Johannes, MERKLEIN Marion, Numerical and experimental investigation of a backward extrusion process for forming geared components from coil, Materials Research Proceedings, Vol. 28, pp 929-936, 2023


The article was published as article 101 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] A. Peterburs, Herausforderungen an die dt. Industrie im 21. Jahrhundert, GRIN Verlag, 2012.
[2] A.E, Tekkaya, N.B. Khalifa, G. Grzancic, R. Hölker, Forming of Lightweight Metal Components: Need for New Technologies, Procedia Eng. 81 (2014) 28–37.
[3] M. Merklein, H. Hagenah, T. Schneider, Blechmassivumformung – Stand der Technik und Ausblick, in: M. Merklein (Eds.), Tagungsband zum 2. Workshop, Blechmassivumform-ung, Meisenbach Verlag, 2013, pp. 1–10.
[4] M. Merklein, J. M. Allwood, B.-A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A. E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, CIRP Annals 61 (2012) 725–745.
[5] F. Pilz, J. Henneberg, M. Merklein, Extension of the forming limits of extrusion processes in sheet-bulk metal forming for production of minute functional elements, Manuf. Rev. 7 (2020) 9.
[6] A. Birkert, S. Haage, M. Straub, Umformtechnische Herstellung komplexer Karosserieteile – Auslegung von Ziehanlagen, Springer, Berlin Heidelberg, 2013.
[7] L. Tajul, T. Maeno, K. Mori, Successive Forging of Long Plate Having Inclined Cross-section, Procedia Eng. 81 (2014) 2361–2366.
[8] J. Henneberg, Blechmassivumformung von Funktionsbauteilen aus Bandmaterial, PhD Thesis, FAU, 2022.
[9] K. Mori, T. Nakano, State-of-the-art of plate forging in Japan, Prod. Eng. Res. Devel. 10 (2016) 81–91.
[10] D. Gröbel, R. Schulte, P. Hildenbrand, M. Lechner, U. Engel, P. Sieczkarek, S. Wernicke, S. Gies, A.E. Tekkaya, B.A. Behrens, S. Hübner, M. Vucetic, S. Koch, M. Merklein, Manufacturing of functional elements by sheet-bulk metal forming processes, Prod. Eng. Res. Devel. 10 (2016) 63–80.
[11] D. Gröbel, Herstellung von Nebenformelementen unterschiedlicher Geometrie an Blechen mittels Fließpressverfahren der Blechmassivumformung, PhD Thesis, FAU, 2018.
[12] DIN Deutsches Institut für Normung e.V., DIN 50106 – Prüfung metallischer Werkstoffe – Druckversuch bei Raumtemperatur, Beuth-Verlag, Berlin, 2016.
[13] H. Vierzigmann, M. Merklein, U. Engel, Friction Conditions in Sheet-Bulk Metal Forming, Procedia Engineering 19 (2011) 377–382.
[14] A.E. Tekkaya, A guide for validation of FE-simulations in bulk metal forming, Arab. J. Sci. Engi. 30 (2005) 113–136.
[15] DIN Deutsches Institut für Normung e.V., DIN EN ISO 14577-1:2015-11: Metallische Werkstoffe – Instrumentierte Eindringprüfung zur Bestimmung der Härte und anderer Werkstoffparameter – Teil 1: Prüfverfahren, Beuth-Verlag, Berlin, 2015.