An Overview of the Synthesis of Nanomaterials


An Overview of the Synthesis of Nanomaterials

Arati Gavali, Jolina Rodrigues, Navinchandra Shimpi, Purav Badani

Nanomaterials have distinguished themselves as an outstanding class of materials with at least one dimension falling between 1 and 100 nm. The logical design of nanoparticles allows exceptionally high surface area. It is possible to create nanomaterials with exceptional magnetic, electrical, mechanical, optical, and catalytic capabilities that differ significantly from their bulk counterparts. By carefully regulating the size, shape, synthesis conditions, and appropriate functionalization, the properties of nanomaterials can be tailored to meet specific needs. This chapter highlights the particular characteristics of nanomaterials. We specifically outline and define terminologies associated with nanomaterials. The discussion covers a range of nanomaterial synthesis techniques, including top-down and bottom-up methods.

Nanomaterials, Synthesis, Top-Down and Bottom-Up, Electrospinning, Catalysis

Published online , 35 pages

Citation: Arati Gavali, Jolina Rodrigues, Navinchandra Shimpi, Purav Badani, An Overview of the Synthesis of Nanomaterials, Materials Research Proceedings, Vol. 145, pp 19-53, 2023


Part of the book on Nanobiomaterials

[1] N. Baig, I. Kammakakam, W. Falath, I. Kammakakam, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Mater Adv. 2 (2021) 1821–1871.
[2] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry. 12 (2019) 908–931.
[3] R.P. Feynman, There’s Plenty of Room at the Bottom, 1960
[4] N. Taniguchi, C. Arakawa, T. Kobayashi, 4. nanotechanology: on the basic concept of nanotechnology; Proceedings of the International Conference on Production Engineering; Tokyo, Japan. 26–29 August 1974., in: n.d
[5] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. vander Elst, R.N. Muller, Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem Rev. 110 (2010) 2574–2574.
[6] J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog Mater Sci. 57 (2012) 724–803.
[7] T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson, K.A. Dawson, S. Linse, Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles, Proc Natl Acad Sci U S A. 104 (2007) 2050–2055.
[8] C.C. Fleischer, C.K. Payne, Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes, Acc Chem Res. 47 (2014) 2651–2659.
[9] M. Ramezanpour, S.S.W. Leung, K.H. Delgado-Magnero, B.Y.M. Bashe, J. Thewalt, D.P. Tieleman, Computational and experimental approaches for investigating nanoparticle-based drug delivery systems, Biochim Biophys Acta Biomembr. 1858 (2016) 1688–1709.
[10] C.M.A. Rego, A.F. Francisco, C.N. Boeno, M. v. Paloschi, J.A. Lopes, M.D.S. Silva, H.M. Santana, S.N. Serrath, J.E. Rodrigues, C.T.L. Lemos, R.S.S. Dutra, J.N. da Cruz, C.B.R. dos Santos, S. da S. Setúbal, M.R.M. Fontes, A.M. Soares, W.L. Pires, J.P. Zuliani, Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom, Sci Rep. 12 (2022) 4706.
[11] J. Cao, Y. Pan, Y. Jiang, R. Qi, B. Yuan, Z. Jia, J. Jiang, Q. Wang, Computer-aided nanotoxicology: risk assessment of metal oxide nanoparticlesvianano-QSAR, Green Chemistry. 22 (2020) 3512–3521.
[12] D.N. Heo, W.K. Ko, M.S. Bae, J.B. Lee, D.W. Lee, W. Byun, C.H. Lee, E.C. Kim, B.Y. Jung, I.K. Kwon, Enhanced bone regeneration with a gold nanoparticle-hydrogel complex, J Mater Chem B. 2 (2014) 1584–1593.
[13] T. Prasad Yadav, R. Manohar Yadav, D. Pratap Singh, Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites, Nanoscience and Nanotechnology. 2 (2012) 22–48.
[14] Y. Long, X. Yan, X. Wang, J. Zhang, Electrospinning: The Setup and Procedure., 2019
[15] J. Hong, M. Yeo, G.H. Yang, G. Kim, Cell-electrospinning and its application for tissue engineering, Int J Mol Sci. 20 (2019).
[16] R.M. Pujahari, Solar cell technology, in: Energy Materials, Elsevier, 2021: pp. 27–60.
[17] A. Bashir, T.I. Awan, A. Tehseen, M.B. Tahir, M. Ijaz, Interfaces and surfaces, in: Chemistry of Nanomaterials, Elsevier, 2020: pp. 51–87.
[18] Z. Szabó, J. Volk, E. Fülöp, A. Deák, I. Bársony, Regular ZnO nanopillar arrays by nanosphere photolithography, Photonics Nanostruct. 11 (2013) 1–7.
[19] C.-W. Kuo, J.-Y. Shiu, Y.-H. Cho, P. Chen, Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks, Advanced Materials. 15 (2003) 1065–1068.
[20] Yadong Yin, Byron Gates, Younan Xia, A Soft Lithography Approach to the Fabrication of Nanostructures of Single Crystalline Silicon with Well-Defined Dimensions and Shapes, Advance Material . 12 (2000) 1426–1430
[21] R. Matsumoto, S. Adachi, E.H.S. Sadki, S. Yamamoto, H. Tanaka, H. Takeya, Y. Takano, Maskless patterning of gallium-irradiated superconducting silicon using focused ion beam, ACS Appl Electron Mater. 2 (2020) 677–682.
[22] K. Xu, J. Chen, High-resolution scanning probe lithography technology: a review, Applied Nanoscience (Switzerland). 10 (2020) 1013–1022.
[23] I. Sayago, E. Hontañón, M. Aleixandre, Preparation of tin oxide nanostructures by chemical vapor deposition, in: Tin Oxide Materials, Elsevier, 2020: pp. 247–280.
[24] S. Bhaviripudi, E. Mile, S.A. Steiner, A.T. Zare, M.S. Dresselhaus, A.M. Belcher, J. Kong, CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts, J Am Chem Soc. 129 (2007) 1516–1517.
[25] M. Mittal, S. Sardar, A. Jana, Nanofabrication techniques for semiconductor chemical sensors, Handbook of Nanomaterials for Sensing Applications. (2021) 119–137.
[26] K.V. Madhuri, Thermal protection coatings of metal oxide powders, in: Metal Oxide Powder Technologies, Elsevier, 2020: pp. 209–231.
[27] E. Suvaci, E. Özel, Hydrothermal synthesis, in: Encyclopedia of Materials: Technical Ceramics and Glasses, Elsevier, 2021: pp. 59–68.
[28] G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles, Sol-gel based materials for biomedical applications, Prog Mater Sci. 77 (2016) 1–79.
[29] R. Jose Varghese, E.H.M. Sakho, S. Parani, S. Thomas, O.S. Oluwafemi, J. Wu, Introduction to nanomaterials: Synthesis and applications, in: Nanomaterials for Solar Cell Applications, Elsevier, 2019: pp. 75–95.
[30] E. Roduner, Size matters: Why nanomaterials are different, Chem Soc Rev. 35 (2006) 583–592.
[31] B.D. Adams, A. Chen, The role of palladium in a hydrogen economy, Materials Today. 14 (2011) 282–289.
[32] F.S. Alves, J. de A. Rodrigues Do Rego, M.L. da Costa, L.F. Lobato Da Silva, R.A. da Costa, J.N. Cruz, D.D.S.B. Brasil, Spectroscopic methods and in silico analyses using density functional theory to characterize and identify piperine alkaloid crystals isolated from pepper (Piper Nigrum L.), J Biomol Struct Dyn. 38 (2020) 2792–2799.
[33] B.S. Murty, P. Shankar, B. Raj, B.B. Rath, J. Murday, Unique Properties of Nanomaterials, in: Textbook of Nanoscience and Nanotechnology, Springer Berlin Heidelberg, 2013: pp. 29–65.
[34] D.M. Ledwith, A.M. Whelan, J.M. Kelly, A rapid, straightforward method for controlling the morphology of stable silver nanoparticles, J Mater Chem. 17 (2007) 2459–2464.
[35] A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, science (1979). 350 (2015) 1513–1516.
[36] Q. Wu, W.S. Miao, Y. du Zhang, H.J. Gao, D. Hui, Mechanical properties of nanomaterials: A review, Nanotechnol Rev. 9 (2020) 259–273.
[37] B.T. Zhang, X. Zheng, H.F. Li, J.M. Lin, Application of carbon-based nanomaterials in sample preparation: A review, Anal Chim Acta. 784 (2013) 1–17.
[38] K. Scida, P.W. Stege, G. Haby, G.A. Messina, C.D. García, Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review, Anal Chim Acta. 691 (2011) 6–17.
[39] X. Lu, M. Yu, H. Huang, R.S. Ruoff, Tailoring graphite with the goal of achieving single sheets, 1999.
[40] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nanotechnol. 3 (2008) 270–274.
[41] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science (1979). 313 (2006) 951–954.
[42] Z.Y. Juang, C.Y. Wu, A.Y. Lu, C.Y. Su, K.C. Leou, F.R. Chen, C.H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process, Carbon N Y. 48 (2010) 3169–3174.
[43] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat Nanotechnol. 3 (2008) 563–568.
[44] P. Kumar, L.S. Panchakarla, C.N.R. Rao, Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons, nanoscale. 3 (2011) 2127–2129.
[45] S. Nasir, M.Z. Hussein, Z. Zainal, N.A. Yusof, Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications, Materials. 11 (2018).
[46] G.A. Naikoo, I.U. Hassan, R.A. Dar, W. Ahmed, Development of electrode materials for high-performance supercapacitors, Emerging Nanotechnologies for Renewable Energy. (2021) 545–557.
[47] R. Mishra, J. Militky, M. Venkataraman, Nanoporous materials, in: Nanotechnology in Textiles, Elsevier, 2019: pp. 311–353.
[48] W. Ahmed, M. Booth, E. Nourafkan, Emerging Nanotechnologies for Renewable Energy, 2021
[49] S. Bhattacharyya, Y. Mastai, R. Narayan Panda, S.H. Yeon, M.Z. Hu, Advanced nanoporous materials: Synthesis, properties, and applications, J Nanomater. 2014 (2014).
[50] C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent Advances in Ultrathin Two-Dimensional Nanomaterials, Chem Rev. 117 (2017) 6225–6331.
[51] D. Chimene, D.L. Alge, A.K. Gaharwar, Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects, Advanced Materials. 27 (2015) 7261–7284.
[52] K.S. Novoselov, A.K. Geim, S. v. Morozov, D. Jiang, Y. Zhang, S. v. Dubonos, I. v. Grigorieva, A.A. Firsov, Electric field in atomically thin carbon films, science (1979). 306 (2004) 666–669.
[53] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat Mater. 6 (2007) 183–191.
[54] H. Zhang, Ultrathin Two-Dimensional Nanomaterials, ACS Nano. 9 (2015) 9451–9469.
[55] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys Rev Lett. 105 (2010).
[56] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 (2010) 1271–1275.
[57] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V. v. Khotkevich, S. v. Morozov, A.K. Geim, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences. 102 (2005) 10451–10453.
[58] H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS 2 and WSe 2 Nanosheets, Acc Chem Res. 47 (2014) 1067–1075.
[59] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat Nanotechnol. 5 (2010) 722–726.
[60] V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid Exfoliation of Layered Materials, Science (1979). 340 (2013).
[61] M.B. Dines, Lithium intercalation via -Butyllithium of the layered transition metal dichalcogenides, Mater Res Bull. 10 (1975) 287–291.
[62] P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2, Mater Res Bull. 21 (1986) 457–461.
[63] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett. 9 (2009) 30–35.
[64] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science (1979). 324 (2009) 1312–1314.
[65] J.S. Son, J.H. Yu, S.G. Kwon, J. Lee, J. Joo, T. Hyeon, Colloidal Synthesis of Ultrathin Two-Dimensional Semiconductor Nanocrystals, Advanced Materials. 23 (2011) 3214–3219.
[66] X.-J. Wu, X. Huang, X. Qi, H. Li, B. Li, H. Zhang, Copper-Based Ternary and Quaternary Semiconductor Nanoplates: Templated Synthesis, Characterization, and Photoelectrochemical Properties, Angewandte Chemie International Edition. 53 (2014) 8929–8933.
[67] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J Am Chem Soc. 80 (1958) 1339–1339.
[68] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials. 23 (2011) 4248–4253.
[69] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Transition Metal Carbides, ACS Nano. 6 (2012) 1322–1331.
[70] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials, Nat Nanotechnol. 9 (2014) 768–779.
[71] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W.D. Lou, Y. Xie, Defect-Rich MoS 2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution, Advanced Materials. 25 (2013) 5807–5813.
[72] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, Nat Mater. 12 (2013) 850–855.
[73] X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications, Chem. Soc. Rev. 43 (2014) 7067–7098.
[74] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, nature. 414 (2001) 359–367.
[75] M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Remediation of wastewater using various nanomaterials, Arabian Journal of Chemistry. 12 (2019) 4897–4919.
[76] Y.S. Zhao, H. Fu, A. Peng, Y. Ma, D. Xiao, J. Yao, Low-Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties, Advanced Materials. 20 (2008) 2859–2876.
[77] M.-H. Sun, S.-Z. Huang, L.-H. Chen, Y. Li, X.-Y. Yang, Z.-Y. Yuan, B.-L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine, Chem Soc Rev. 45 (2016) 3479–3563.
[78] S. G., U. N., N. R., K. P., V. G., C. B., A REVIEW ON PROPERTIES, APPLICATIONS AND TOXICITIES OF METAL NANOPARTICLES, International Journal of Applied Pharmaceutics. (2020) 58–63.
[79] A.A. Dar, K. Umar, N.A. Mir, M.M. Haque, M. Muneer, C. Boxall, Photocatalysed degradation of a herbicide derivative, Dinoterb, in aqueous suspension, Research on Chemical Intermediates. 37 (2011) 567–578.
[80] K. Umar, M.M. Haque, N.A. Mir, M. Muneer, I.H. Farooqi, Titanium Dioxide-mediated Photocatalysed Mineralization of Two Selected Organic Pollutants in Aqueous Suspensions, Journal of Advanced Oxidation Technologies. 16 (2013).
[81] A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar, M.N. Mohamad Ibrahim, Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review, Front Chem. 8 (2020).
[82] R. Li, T. Chen, X. Pan, Metal–Organic-Framework-Based Materials for Antimicrobial Applications, ACS Nano. 15 (2021) 3808–3848.
[83] R. Ghosh Chaudhuri, S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chem Rev. 112 (2012) 2373–2433.
[84] M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A. v. Biradar, D.-L. Peng, R. Zboril, R.S. Varma, Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis, Chem Soc Rev. 44 (2015) 7540–7590.
[85] M. Khan, S. Mishra, D. Ratna, S. Sonawane, N.G. Shimpi, Investigation of thermal and mechanical properties of styrene–butadiene rubber nanocomposites filled with SiO 2 –polystyrene core–shell nanoparticles, J Compos Mater. 54 (2020) 1785–1795.
[86] A. v Nomoev, S.P. Bardakhanov, M. Schreiber, D.G. Bazarova, N.A. Romanov, B.B. Baldanov, B.R. Radnaev, V. v Syzrantsev, Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation, Beilstein Journal of Nanotechnology. 6 (2015) 874–880.
[87] H. Chen, L. Zhang, M. Li, G. Xie, Synthesis of Core–Shell Micro/Nanoparticles and Their Tribological Application: A Review, Materials. 13 (2020) 4590.
[88] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C, Chem Lett. 16 (1987) 405–408.
[89] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials. 26 (2005) 3995–4021.
[90] A. Moisala, A.G. Nasibulin, E.I. Kauppinen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review, Journal of Physics: Condensed Matter. 15 (2003) S3011–S3035.
[91] P.K. Tandon, S. Bahadur Singh, P. Kumar Tandon, Catalysis: A brief review on Nano-Catalyst, 2014.
[92] W.-W. Tang, G.-M. Zeng, J.-L. Gong, J. Liang, P. Xu, C. Zhang, B.-B. Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review, Science of The Total Environment. 468–469 (2014) 1014–1027.
[93] J. Yan, L. Han, W. Gao, S. Xue, M. Chen, Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene, Bioresour Technol. 175 (2015) 269–274.
[94] F. Liu, J. Yang, J. Zuo, D. Ma, L. Gan, B. Xie, P. Wang, B. Yang, Graphene-supported nanoscale zero-valent iron: Removal of phosphorus from aqueous solution and mechanistic study, Journal of Environmental Sciences. 26 (2014) 1751–1762.
[95] R.S. Kalhapure, S.J. Sonawane, D.R. Sikwal, M. Jadhav, S. Rambharose, C. Mocktar, T. Govender, Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA, Colloids Surf B Biointerfaces. 136 (2015) 651–658.
[96] H. Lu, J. Wang, M. Stoller, T. Wang, Y. Bao, H. Hao, An Overview of Nanomaterials for Water and Wastewater Treatment, Advances in Materials Science and Engineering. 2016 (2016) 1–10.
[97] Z. Zhao, J. Sun, S. Xing, D. Liu, G. Zhang, L. Bai, B. Jiang, Enhanced Raman scattering and photocatalytic activity of TiO2 films with embedded Ag nanoparticles deposited by magnetron sputtering, J Alloys Compd. 679 (2016) 88–93.
[98] Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan, X. Yang, Elementary photocatalytic chemistry on TiO 2 surfaces, Chem Soc Rev. 45 (2016) 3701–3730.
[99] L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Hierarchical MoS 2 Nanosheet@TiO 2 Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances, Small. 12 (2016) 1527–1536.
[100] Kh. Brainina, N. Stozhko, M. Bukharinova, E. Vikulova, Nanomaterials: Electrochemical Properties and Application in Sensors, Physical Sciences Reviews. 3 (2018).
[101] V.S. Manikandan, B. Adhikari, A. Chen, Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages, Analyst. 143 (2018) 4537–4554.
[102] K.J. Cash, H.A. Clark, Nanosensors and nanomaterials for monitoring glucose in diabetes, Trends Mol Med. 16 (2010) 584–593.
[103] D. Wilson, E.M. Materón, G. Ibáñez-Redín, R.C. Faria, D.S. Correa, O.N. Oliveira, Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides, Talanta. 194 (2019) 611–618.
[104] M. Zhong, L. Yang, H. Yang, C. Cheng, W. Deng, Y. Tan, Q. Xie, S. Yao, An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags, Biosens Bioelectron. 126 (2019) 493–500.
[105] Jigyasa, J.K. Rajput, Bio-polyphenols promoted green synthesis of silver nanoparticles for facile and ultra-sensitive colorimetric detection of melamine in milk, Biosens Bioelectron. 120 (2018) 153–159.
[106] M.M. Rahman, J. Ahmed, Cd-doped Sb2O4 nanostructures modified glassy carbon electrode for efficient detection of melamine by electrochemical approach, Biosens Bioelectron. 102 (2018) 631–636.
[107] A. Sivapunniyam, N. Wiromrat, M. Myint, J. Dutta, High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate. Sensors and Actuators B-Chemical. , Sensors and Actuators B-Chemical. 157 (2011) 232–239
[108] T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing, Sens Actuators B Chem. 190 (2014) 120–126.
[109] N.G. Shimpi, S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor, Appl Surf Sci. 390 (2016) 17–24.
[110] Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, W. Yu, Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties, Sens Actuators B Chem. 143 (2010) 635–640.
[111] S. Duan, Z. Du, H. Fan, R. Wang, Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications, Nanomaterials. 8 (2018) 949.
[112] O. Wolf, M. Dasog, Z. Yang, I. Balberg, J.G.C. Veinot, O. Millo, Doping and Quantum Confinement Effects in Single Si Nanocrystals Observed by Scanning Tunneling Spectroscopy, Nano Lett. 13 (2013) 2516–2521.
[113] J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets, Nano Lett. 15 (2015) 6521–6527.
[114] J. Wu, H. Yang, Platinum-Based Oxygen Reduction Electrocatalysts, Acc Chem Res. 46 (2013) 1848–1857.
[115] R. v. Salvatierra, G.A. López‐Silva, A.S. Jalilov, J. Yoon, G. Wu, A. Tsai, J.M. Tour, Suppressing Li Metal Dendrites Through a Solid Li‐Ion Backup Layer, Advanced Materials. 30 (2018) 1803869.
[116] C. Niu, H. Pan, W. Xu, J. Xiao, J.-G. Zhang, L. Luo, C. Wang, D. Mei, J. Meng, X. Wang, Z. Liu, L. Mai, J. Liu, Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions, Nat Nanotechnol. 14 (2019) 594–601.
[117] G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver Nanoparticles as Potential Antibacterial Agents, Molecules. 20 (2015) 8856–8874.
[118] K. Murali, M.S. Neelakandan, S. Thomas, Biomedical Applications of Gold Nanoparticles, JSM Nanotechnol Nanomed. 6 (2018) 1064
[119] B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials. 29 (2008) 487–496.
[120] L. Qi, X. Gao, Emerging application of quantum dots for drug delivery and therapy, Expert Opin Drug Deliv. 5 (2008) 263–267.
[121] J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications, Expert Opin Drug Deliv. 7 (2010) 1063–1077.
[122] S. Marella, A.R. Nirmal Kumar, N.V.K.V.P. Tollamadugu, Nanotechnology-based innovative technologies for high agricultural productivity: Opportunities, challenges, and future perspectives, in: Recent Developments in Applied Microbiology and Biochemistry, Elsevier, 2021: pp. 211–220.
[123] A.R.J.A. de M. Lima, A.S. Siqueira, M.L.S. Möller, R.C. de Souza, J.N. Cruz, A.R.J.A. de M. Lima, R.C. da Silva, D.C.F. Aguiar, J.L. da S.G.V. Junior, E.C. Gonçalves, In silico improvement of the cyanobacterial lectin microvirin and mannose interaction, J Biomol Struct Dyn. (2020).
[124] T.M. Benn, P. Westerhoff, Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics, Environ Sci Technol. 42 (2008) 4133–4139.
[125] S. Campuzano, B. Esteban-Fernández de Ávila, P. Yáñez-Sedeño, J.M. Pingarrón, J. Wang, Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level, Chem Sci. 8 (2017) 6750–6763.