Effect of Substitution on the Electric and Magnetic Properties of SrFe12O19 Hexa Hard Ferrites


Effect of Substitution on the Electric and Magnetic Properties of SrFe12O19 Hexa Hard Ferrites

Dipti Rawat, Ragini Raj Singh

The hexagonal ferrites, also known as hexaferrites, have stimulated interest subsequent to their finding in the 1950s, which is steadily growing today. Both commercially and technologically, these materials have grown in importance. In addition to their employment as permanent magnets, they are commonly used as “magnetic recording and data storage materials, as well as components in electrical systems, notably those that activates at microwave/GHz frequency range”. The goal of the presented study is to offer new ideas for the development of magnetic samples Strontium hexaferrite SrFe12O19 (SrM) that are suited for specific applications, as well as to explain the influence of rare-earth (RE) substitution on the magnetic and electrical properties of SrM.

Hexaferrite, Rare-Earth, Electrical Properties, Magnetic Properties, Substitutions

Published online 2/1/2023, 28 pages

Citation: Dipti Rawat, Ragini Raj Singh, Effect of Substitution on the Electric and Magnetic Properties of SrFe12O19 Hexa Hard Ferrites, Materials Research Foundations, Vol. 142, pp 93-120, 2023

DOI: https://doi.org/10.21741/9781644902318-4

Part of the book on An Introduction to Hard Ferrites

[1] B. Want, B. H.Bhat, Magnetic and dielectric characteristics of Nd and Nd-Mg substituted strontium hexaferrite, Mod. Electron. Mater. 4, 21.(2018) https://doi.org/10.3897/j.moem.4.1.33273
[2] G. C.Papaefthymiou, Nanoparticle magnetism, Nano. Today. 4(2009) 438-447. https://doi.org/10.1016/j.nantod.2009.08.006
[3] K.Sato, when atoms move around, Nat.Mater. 8(2009)924-925. https://doi.org/10.1038/nmat2575
[4] G. Reiss, A. Hutten, Nat. Mater. 4 (2005)725-726. https://doi.org/10.1038/nmat1494
[5] J. H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J. W.Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol.6 (2011) 418-422. https://doi.org/10.1038/nnano.2011.95
[6] J. Zhang, J. Fu, F. Li, E. Xie, D. Xue, N. J.Mellors, Y. Peng, BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism, Acs Nano. 6 (2012) 2273-2280. https://doi.org/10.1021/nn204342m
[7] Li, Q., Song, J., Saura-Múzquiz, M., Besenbacher, F., Christensen, M., M. Dong, Magnetic properties of strontium hexaferrite nanostructures measured with magnetic force microscopy, Sci. Rep. 6(2016) 1-7. https://doi.org/10.1038/srep25985
[8] P. E. Kazin, L. A.Trusov, D. D. Zaitsev, Y. D. Tretyakov, M. Jansen, Formation of submicron-sized SrFe12− xAlxO19 with very high coercivity. J.Magn.Magn.Mater. 320(2008) 1068-1072. https://doi.org/10.1016/j.jmmm.2007.10.020
[9] M. J. Iqbal, M. N. Ashiq, P. Hernández-Gómez, J. M. M. Muñoz, C. T. Cabrera, Influence of annealing temperature and doping rate on the magnetic properties of Zr-Mn substituted Sr-hexaferrite nanoparticles, J.Alloys Compd. 500(2010) 113-116. https://doi.org/10.1016/j.jallcom.2010.03.228
[10] H. Z.Wang, B.Yao, Y. Xu, Q.He, G. H.Wen, S. W.Long, L. L.Gao,Improvement of the coercivity of strontium hexaferrite induced by substitution of Al3+ ions for Fe3+ ions, J.Alloys Compd. 537(2012) 43-49. https://doi.org/10.1016/j.jallcom.2012.05.063
[11] D. Rawat, R. R Singh, Avant-grade magneto/fluorescent nanostructures for biomedical applications: Organized and comprehensive optical and magnetic evaluation, Nano-Struct. Nano-Objects. 26 (2021)100714. https://doi.org/10.1016/j.nanoso.2021.100714
[12] Pullar, R. C. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57(2012)1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[13] X.Meng, J. Mi, Q.Li, C.Bortolini, M.Dong, One dimensional BaxSr1− xEr yFe12−yO19fibers with magnetic crystalline nanoparticles, Mater. Res. Express. 1(2014)036106. https://doi.org/10.1088/2053-1591/1/3/036106
[14]S.Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution, Solid State Commun. 138(2006) 472-475. https://doi.org/10.1016/j.ssc.2006.03.020
[15]G.Nabiyouni, A.Ahmadi, D.Ghanbari, H. Halakouie, SrFe12O19 ferrites and hard magnetic PVA nanocomposite: investigation of magnetization, coecivity and remanence, J. Mater. Sci. Mater. Electron. J MATER SCI-MATER EL.27(2016) 4297-4306. https://doi.org/10.1007/s10854-016-4296-9
[16] F. Kools,A.Morel, R.Grössinger, J. M.Le Breton, P. Tenaud, (2002). LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets
intrinsic and microstructural aspects. J.Magn.Magn.Mater. 242(2002) 1270-1276. https://doi.org/10.1016/S0304-8853(01)00988-X
[17] Sharma, P., Verma, A., Sidhu, R. K., & Pandey, O. P. (2003). Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets. J.Alloys. Compd. 361(2003)257-264. https://doi.org/10.1016/S0925-8388(03)00390-6
[18] M.Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari,Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite, J. Mol. Liq. 229(2017) 293-299. https://doi.org/10.1016/j.molliq.2016.12.090
[19] M. Hassanpour, H. Safardoust-Hojaghan, M.Salavati-Niasari, Rapid and eco-friendly synthesis of NiO/ZnO nanocomposite and its application in decolorization of dye, J. Mater. Sci. Mater. Electron. J MATER SCI-MATER EL. 28(2017) 10830-10837. https://doi.org/10.1007/s10854-017-6860-3
[20] L. A.Trusov, E. A.Gorbachev, V. A. Lebedev, A. E.Sleptsova, I. V.Roslyakov, E. S.Kozlyakova,P. E.Kazin, (2018). Ca-Al double-substituted strontium hexaferrites with giant coercivity, Chem. Comm. 54(2018) 479-482. https://doi.org/10.1039/C7CC08675J
[21] G. M.Rai, M. A.Iqbal, K. T.Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites, J.Alloys. Compd. 495(2010) 229-233. https://doi.org/10.1016/j.jallcom.2010.01.133
[22] S. Ounnunkad, P. Winotai, Properties of Cr-substituted M-type barium ferrites prepared by nitrate-citrate gel-autocombustion process, J.Magn. Magn. Mater. 301(2006) 292-300. https://doi.org/10.1016/j.jmmm.2005.07.003
[23] X. Liu, W. Zhong, S. Yang, Z.Yu, B.Gu, Y.Du, (2002). Structure and magnetic properties of La3+‐substituted strontium hexaferrite particles prepared by sol-gel method, Physica status solidi (a). 193(2002) 314-319. https://doi.org/10.1002/1521-396X(200209)193:2<314::AID-PSSA314>3.0.CO;2-W
[24] J. F. Wang, C. B.Ponton,I. R.Harris, A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis, J.Alloys Compd. 403(2005), 104-109. https://doi.org/10.1016/j.jallcom.2005.05.025
[25] J. F. Wang, C. B.Ponton, I. R. Harris, A study of Sm-substituted SrM magnets sintered using hydrothermally synthesised powders, J.Magn.Magn.Mater. 298(2006) 122-131. https://doi.org/10.1016/j.jmmm.2005.03.012
[26] M. Elansary, M. Belaiche, C. A.Ferdi, E.Iffer, I. Bsoul, New nanosized Gd-Ho-Sm doped M-type strontium hexaferrite for water treatment application: experimental and theoretical investigations, RSC Advan. 10(2020), 25239-25259. https://doi.org/10.1039/D0RA04722H
[27] L. M. Castelliz, K. M. Kim, P. S. Boucher, Preparation, stability range and high frequency permeability of some ferroxplana compounds, J. Can. Ceram. Soc.38 (1969) 57.
[28] K. Kamishima, N.Hosaka, K. Kakizaki,N.Hiratsuka, Crystallographic and magnetic properties of Cu2X, Co2X, and Ni2X hexaferrites, J. Appl. Phys. 109(2011) 013904. https://doi.org/10.1063/1.3527933
[29] S. I.Kuznetsova, E. P.Naiden, T. N.Stepanova, Topotactic reaction kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41, Inorg. Mater., 24(1998), 856-859.
[30] J. Drobek,W. C. Bigelow, R. G. Wells, Electron microscopic studies of growth structures in hexagonal ferrites, J. Am. Ceram. Soc. 44(1961) 262-264. https://doi.org/10.1111/j.1151-2916.1961.tb15375.x
[31] F. M. M.Pereira, A. S. B.Sombra, A review on BaxSr1-XFe12O19 hexagonal ferrites for use in electronic devices,Solid State Phenom.202 (2013) 1-64. https://doi.org/10.4028/www.scientific.net/SSP.202.1
[32] E. P.Naiden, V. I.Itin, O. G.Terekhova, Mechanochemical modification of the phase diagrams of hexagonal oxide ferrimagnets, Tech. Phys. Lett. 29(2003), 889-891. https://doi.org/10.1134/1.1631354
[33] K. Haneda, C. Miyakawa, H. Kojima, (1974). Preparation of High‐Coercivity BaFe12O19,J. Am. Ceram. Soc.57(1974) 354-357. https://doi.org/10.1111/j.1151-2916.1974.tb10921.x
[34] H. Yamamoto, H. Kumehara, R. Takeuchi, H. Nishio, Magnetic properties of Sr-M ferrite fine particles, Le Journal de Physique IV. 7(1997)535. https://doi.org/10.1051/jp4:19971219
[35] S. Okamoto, Structure of δ‐FeOOH, J. Am. Ceram. Soc. 51(1968) 594-598. https://doi.org/10.1111/j.1151-2916.1968.tb13329.x
[36] E.Matijevic,Uniform colloidal barium ferrite particles. J. Colloid Interface Sci. 117(1987) 593-595. https://doi.org/10.1016/0021-9797(87)90426-7
[37] C. Sürig, D. Bonnenberg,K. A.Hempel, P. Karduck, H. J. Klaar, C. Sauer, Effects of variations in stoichiometry on M-type hexaferrites, Le Journal de Physique IV. 7(1997)315. https://doi.org/10.1051/jp4:19971124
[38] W.Zhong, W. Ding, N.Zhang, J. Hong, Q.Yan, Y. Du, Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique, J.Magn. Magn. Mater. 168 (1997) 196-202. https://doi.org/10.1016/S0304-8853(96)00664-6
[39] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 and SrFe12O19) fibres, J. Eur. Ceram. Soc. 22(2002) 2039-2045. https://doi.org/10.1016/S0955-2219(01)00518-0
[40] I. C.Heck, Magnetic Material and Its Applications, 1974.
[41] P.Muth, (1981). EP Wohlfarth (ed.). Ferromagnetic Materials, 2. (1981) 5210.
[42] C. H. Wilts, F. B. Humphrey, Magnetic anisotropy in flat ferromagnetic films: a review. J. Appl. Phys. 39 (1968) 1191-1196. https://doi.org/10.1063/1.1656219
[43] K. J. Sixtus, K. J. Kronenberg, R. K. Tenzer, Investigations on barium ferrite magnets, J. Appl. Phys. 27 (1956) 1051-1057. https://doi.org/10.1063/1.1722540
[44] B. T. Shirk,Ba2Fe6O11: A new metastable compound, Mater. Res. Bull. 5 (1970) 771-777. https://doi.org/10.1016/0025-5408(70)90091-7
[45] W. A.Kaczmarek, B.Idzikowski,K. H.Müller, (1998). XRD and VSM study of ball-milled SrFe12O19 powder, J.Magn.MagnMater. 177 (1998) 921-922. https://doi.org/10.1016/S0304-8853(97)00839-1
[46] N. Langhof, D. Seifert, M. Göbbels, J. Töpfer, Reinvestigation of the Fe-rich part of the pseudo-binary system SrO-Fe2O3, J. Solid State Chem. 182 (2009) 2409-2416. https://doi.org/10.1016/j.jssc.2009.05.039
[47] E. Otsuki, H. Matsuzawa, Magnetic properties of SrO.nFe2O3 powder synthesized by self-combustion process, In Journal de Physique IV Colloque 7(1997) 323. https://doi.org/10.1051/jp4:19971128
[48] F. M. M. Pereira, A. S. B.Sombra, A review on BaxSr1-XFe12O19 hexagonal ferrites for use in electronic devices, Solid State Phenomena.202, (2013) 1-64. https://doi.org/10.4028/www.scientific.net/SSP.202.1
[49] E. Wu, S. J. Campbell, W. A. Kaczmarek, A Mössbauer effect study of ball-milled strontium ferrite, J. Magn. Magn. Mater. 177 (1998) 255-256. https://doi.org/10.1016/S0304-8853(97)00910-4
[50] H. Taguchi, T. Takeishi, K. Suwa, K. Masuzawa, Y. Minachi,High energy ferrite magnets, Le Journal de Physique IV. 7 (1997) 311. https://doi.org/10.1051/jp4:19971122
[51] N.Dung, D. Minh, B.Cong, N.Chau, N.Phuc, The influence of La2O3 substitution on the structure and properties of Sr hexaferrite,In J. de. Phys. IV Colloque 7 (1997) 313. https://doi.org/10.1051/jp4:19971123
[52] R. Grossinger, M. Kupferling, J. C. Tellez Blanco, G. Wiesinger, M. Muller, G. Hilscher , et al, IEEE Trans Mag. 39 (2003) 2911. https://doi.org/10.1109/TMAG.2003.815745
[53] J. F. Wang, C. B.Ponton, R. Grössinger, I. R. Harris, A study of La-substituted strontium hexaferrite by hydrothermal synthesis, J.Alloys. Compd. 369 (2004) 170-177. https://doi.org/10.1016/j.jallcom.2003.09.097
[54] J. F. Wang, C. B. Ponton, I. R. Harris, A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloys. Compd.403 (2005) 104-109. https://doi.org/10.1016/j.jallcom.2005.05.025
[55] Jr. Brown, W. F, The effect of dislocations on magnetization near saturation, Phys. Rev. 60 (1941) 139. https://doi.org/10.1103/PhysRev.60.139
[56] M. Z. Shoushtari, S. E. M. Ghahfarokhi, F. Ranjbar, Synthesis and Magnetic Properties of SrFe12-xCoxO19 (x= 0-2) Hexaferrite Nanoparticles, In Adv. Mater. Res.622 (2013) 925-929. https://doi.org/10.1007/s10948-014-2887-3
[57] B. A.Calhoun, M. J. Freiser,(1963). Anisotropy of gadolinium iron garnet, J. Appl. Phys. 34 (1963) 1140-1145. https://doi.org/10.1063/1.1729407
[58] N. A.Algarou, Y. Slimani, M. A.Almessiere,A.Baykal, Exchange-coupling behavior inSrTb0.01Tm0.01Fe11.98O19/(CoFe2O4)x hard/soft nanocomposites, New J. Chem.44(2020) 5800-5808. https://doi.org/10.1039/D0NJ00109K
[59] H. Yang, M. Liu, Y. Lin, G. Dong, L. Hu, Y. Zhang, J. Tan, Enhanced remanence and (BH) max of BaFe12O19/CoFe2O4 composite ceramics prepared by the microwave sintering method, Mater. Chem. Phys. 160(2015) 5-11. https://doi.org/10.1016/j.matchemphys.2015.04.032
[60] M. A. Radmanesh, S. S.Ebrahimi, (2012). Synthesis and magnetic properties of hard/softSrFe12O19/Ni0.7Zn0.3Fe2O4 nanocomposite magnets, J. Magn. Magn. Mater.324(2012) 3094-3098. https://doi.org/10.1016/j.jmmm.2012.05.008
[61] C. Pahwa,S.B.Narang, P. Sharma.P, Composition dependent magnetic and microwave properties of exchange-coupled hard/soft nanocomposite ferrite, J. Alloys Compd. 815(2020) 152391. https://doi.org/10.1016/j.jallcom.2019.152391
[62]M. Stingaciu, M.Reuvekamp, C. Tai, R. K. Kremer, M.Johnsson, The magnetodielectriceffect in BaTiO3-SrFe12O19 nanocomposites. J. Mater. Chem. C. 2(2) (2014) 325-330. https://doi.org/10.1039/C3TC31737D
[63] R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, P. A. Midgley, Impedance spectroscopy of epitaxial multiferroic thin films,Phys. Rev. B: Condens. Matter Mater. Phys. 75 (2007) 245111. https://doi.org/10.1103/PhysRevB.75.245111
[64] M. Stingaciu, M.Reuvekamp, C. Tai, R. K. Kremer, M.Johnsson, The magnetodielectriceffect in BaTiO3-SrFe12O19 nanocomposites. J. Mater. Chem. C. 2(2) (2014) 325-330. https://doi.org/10.1039/C3TC31737D
[65] M. M. Parish, P. B. Littlewood, Magnetocapacitance in nonmagnetic composite media,Phys. Rev. Lett. 101 (2008) 166602. https://doi.org/10.1103/PhysRevLett.101.166602
[66] X. Li, J. Wei, K. E.Aifantis, Y. Fan, Q.Feng, F. Z.Cui, F. Watari, Current investigations into magnetic nanoparticles for biomedical applications, J. Biomed. Mater. Res. A. 104(5)(2016)1285-1296. https://doi.org/10.1002/jbm.a.35654
[67] L. Bouet, P. Tailhades, I. Pasquet, C. Bonningue, S. Le Brun, A. Rousset, Cation-deficient spinel ferrites: application for high-density write-once optical recording, Jpn. J. Appl. Phys. 38(3S) (1999) 1826. https://doi.org/10.1143/JJAP.38.1826