Nanomaterials in the Automobile Sector


Nanomaterials in the Automobile Sector

Mohammad Harun-Ur-Rashid and Abu Bin Imran

The automobile sector is continuously putting efforts into ensuring the safety and comfort of passengers, intelligent traffic guidance systems, pollution reduction, and successful recycling processes. The constructive and successful utilization of nanomaterials is an effective and potential scientific strategy that simplifies the technologies to develop lighter, more durable and economical, faster, and smart devices by consuming less raw materials and optimum energy. Emerging nanomaterials in the automobile sector explores how nanomaterials and nanotechnology are utilized to boost the performance of materials and devices required for automobile application by designing and developing nanocomposites, nanoalloys, nanocoatings, nanocatalysts, nanolubricants, and nanoadditives. In addition to these, this chapter will focus on the application of green polymer nanocomposites in automobile sector to address the issues associated with nanotoxicity.

Automobile, Nanomaterials, Nanotechnology, Nanoalloys, Nanocoatings, Nanocatalysts, Nanolubricants, Nanoadditives, Green Polymer Nanocomposites, Nanotoxicity

Published online 2/1/2023, 27 pages

Citation: Mohammad Harun-Ur-Rashid and Abu Bin Imran, Nanomaterials in the Automobile Sector, Materials Research Foundations, Vol. 141, pp 124-150, 2023


Part of the book on Emerging Applications of Nanomaterials

[1] M. Harun-Ur-Rashid, T. Seki, Y. Takeoka, Structural colored gels for tunable soft photonic crystals, Chem. Rec. 9 (2009) 87-105.
[2] M. Harun-Ur-Rashid, A. B. Imran, Superabsorbent hydrogels from carboxymethyl cellulose”, in Ibrahim H. Mondal (ed.) Carboxymethyl Cellulose. Volume I: Synthesis and Characterization, Nova Science Publishers, New York, 2019, pp. 159-182.
[3] M.R. Karim, Harun-Ur-Rashid, A.B. Imran, Highly stretchable hydrogel using vinyl modified narrow dispersed silica particles as cross-linker, ChemistrySelect, 5 (2020) 10556-10561.
[4] M. Harun-Ur-Rashid, T. Foyez, A. B. Imran, Fabrication of stretchable composite thin film for superconductor applications. In Sensors for Stretchable Electronics in Nanotechnology, CRC Press, 2021, pp. 63-78.
[5] R. Bagade, A. K. Potbhare, R. G. Chaudhary, A. Mondal, M Desimone, R.Mishra, H.D. Juneja. Microspheres/Custard-Apples Copper (II) Chelate Polymer: Characterization, Docking, Antioxidant and Antibacterial Assay, ChemistrySelect, 4 (2019) 6233-6244.
[6] A-N. Chowdhury, J. Shapter, and A. B. Imran, Innovations in Nanomaterials, Nova Science Publishers, Inc., NY, USA, 2015
[7] M. Harun-Ur-Rashid, A. B. Imran, T. Seki, Y. Takeoka, M. Ishii, H. Nakamura, Template synthesis for stimuli-responsive angle independent structural colored smart materials, Trans. Mater. Res. Soc. 34 (2009) 333-337.
[8] M. Harun-Ur-Rashid, A. B. Imran, T. Seki, M. Ishii, H. Nakamura, Y. Takeoka, Angle-independent structural color in colloidal amorphous arrays, ChemPhysChem, 11 (2010) 579-583.
[9] Y. Takeoka, S. Yoshioka, M. Teshima, A. Takano, M. Harun-Ur-Rashid, M., T. Seki, Structurally coloured secondary particles composed of black and white colloidal particles, Sci. Rep. 3 (2013) 1-7.
[10] A. B. Imran, M. Harun-Ur-Rashid, Y. Takeoka, Polyrotaxane Actuators. In Soft Actuators, Springer, Singapore, 2019, pp. 81-147.
[11] M. Harun-Ur-Rashid, T. Foyez, I. Jahan, K. Pal, A. B. Imran, Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review, RSC Advances, 12 (2022) 9445-9465.
[12] A.K. Chandra, N.R. Kumar, Polymer nanocomposites for automobile engineering applications. In Properties and Applications of Polymer Nanocomposites. Springer, Berlin, Heidelberg, 2017, pp. 139-172.
[13] S. Modi, A. Vadhavkar, Technology Roadmap: Materials and Manufacturing, Michigan USA, 2019.
[14] Q. Wang, S. Xiao, S.Q. Shi, L. Cai, Effect of light-delignification on mechanical, hydrophobic, and thermal properties of high-strength molded fiber materials. Sci. Rep. 8 (2018) 1-10.
[15] UBS. (2017, August). Retrieved from
[16] S.M. Zoepf, Automotive features: mass impact and deployment characterization, Doctoral dissertation, Massachusetts Institute of Technology, 2011.
[17] T. Furuta, Automobile applications of titanium. In Titanium for consumer applications, Elsevier, 2019, pp. 77-90.
[18] J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric nanocomposites for automotive applications, Adv. Mater. 12 (2000) 1835-1839.<1835::AID-ADMA1835>3.0.CO;2-T
[19] A. Usuki, M. Kato, A. Okada, T. Kurauchi, Synthesis of polypropylene-clay hybrid, J. Appl. Polym. Sci. 63 (1997) 137-138.<137::AID-APP15>3.0.CO;2-2
[20] C.J. Chirayil, J. Joy, H.J. Maria, I. Krupa, S. Thomas, (2016). Polyolefins in automotive industry. In Polyolefin Compounds and Materials, Springer, Cham, 2016, pp. 265-283.
[21] D. Rosato, Automotive and nanocomposites. SpecialChem February 9 (2007) 4.
[22] N. Kakarala, S. Shah, SPE Automotive TPO Global Conference 2000 (2000) 147-158.
[23] NK. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, K. Saito, Evolution of the automotive body coating process-A review. Coatings, 6 (2016) 24.
[24] M. Harun-Ur-Rashid, A.B. Imran, M.A.B.H. Susan, (2022). Green Polymer Nanocomposites in Automotive and Packaging Industries, Curr. Pharm. Biotechnol. 6 May (2022).
[25] A. B. Imran, M. A. B. H Susan, Natural fiber-reinforced nanocomposites in automotive industry. In Nanotechnology in the Automotive Industry, Elsevier, 2022, pp. 85-103.
[26] H. Vasiliadis, Nanotechnology in automotive tyres. ObservatoryNANO, 4 (2011) Briefing no 23.
[27] M.N. Sakib, A.A. Iqbal, Epoxy based nanocomposite material for automotive application-a short review, Int. J. Automot. Mec. Eng. 18 (2021) 9127-9140.
[28] DSEA Chan, G.W Stachowiak, Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Auto. Eng. 218 (2004), 953-966.
[29] F. Lei, J. Yang, B. Wu, L. Chen, H. Sun, H. Zhang, D. Sun, Facile design and fabrication of highly transparent and hydrophobic coatings on glass with anti-scratch property via surface dewetting. Prog. Org. Coat. 120 (2018) 28-35.
[30] R.K. Mishra, K. Verma, R.G. Chaudhary, T.L. Lambat, K. Joseph, An efficient fabrication of polypropylene hybrid nanocomposites using carbon nanotubes and PET fibrils. Mater. Today: Procs. 29 (2020), 794-800.
[31] A.U. Chaudhry, S.P. Lonkar, R.G. Chudhary, A. Mabrouk, A.A. Abdala, Thermal, electrical, and mechanical properties of highly filled HDPE/graphite nanoplatelets composites. Mater. Today: Procs. 29 (2020) 704-708.
[32] S. Kugler, K. Kowalczyk, T. Spychaj, Transparent epoxy coatings with improved electrical, barrier and thermal features made of mechanically dispersed carbon nanotubes. Prog. Org. Coat. 111 (2017) 196-201.
[33] L.N. Shafigullin, A.M. Sotnikov, N.V. Romanova, E.S. Shabaeva, D.R. Sarimov, Development of a polymeric fuel tank with high barrier properties. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 570 (2019) pp. 012088.
[34] A. Asghari, A. Zarei-Hanzaki, M. Eskandari, Temperature dependence of plastic deformation mechanisms in a modified transformation-twinning induced plasticity steel. Mater. Sci. Eng. A 579 (2013) 150-156.
[35] H. Singh, G.S. Brar, H. Kumar, V. Aggarwal, A review on metal matrix composite for automobile applications. Mater. Today: Proc. 43 (2021) 320-325.
[36] K. Takahashi, K. Mori, H. Takebe, Application of titanium and its alloys for automobile parts. In MATEC Web of Conferences, EDP Sciences 321 (2020) 02003.
[37] A. Marcu, G. Toth, R. Srivastava, P. Strasser, Preparation, characterization and degradation mechanisms of PtCu alloy nanoparticles for automotive fuel cells. J. Power Sources, 208 (2012) 288-295.
[38] A. Gangwar, A. Bhardawaj, R. Singh, N. Kumar, Enhancement in performance and emission characteristics of diesel engine by adding alloy nanoparticle (No. 2016-01-2249). SAE Technical Paper (2016).
[39] P. Kumar, R.K. Upadhyay, Nanomaterials Lubrication for Transportation System. In V. Kumar, A.K. Agarwal, A. Jena, R.K. Upadhyay R.K. (eds) Advances in Engine Tribology. Energy, Environment, and Sustainability, Springer, Singapore, 2022.
[40] J. Li, Y. Peng, X. Tang, Q. Xu, L. Bai, Effect of strain engineering on superlubricity in a double-walled carbon nanotube. Phys. Chem. Chem. Phys. 23 (2021) 4988-5000.
[41] B. Wang, K. Gao, Q. Chang, D. Berman, Y. Tian, Magnesium silicate hydroxide-MoS2-Sb2O3 coating nanomaterials for high-temperature superlubricity. ACS App. Nano Mater. 4 (2021) 7097-7106.
[42] H. Wang, Y. Liu, Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 8 (2020) 1007-1024.
[43] W. Zhai, K. Zhou, Nanomaterials in superlubricity. Adv. Funct. Mater. 29 (2019) 1806395.
[44] A. Kotia, K. Chowdary, I. Srivastava, S.K. Ghosh, M.K.A. Ali, Carbon nanomaterials as friction modifiers in automotive engines: Recent progress and perspectives. J. Mol. Liq. 310 (2020) 113200.
[45] M.K.A. Ali, H. Xianjun, M.A. Abdelkareem, M. Gulzar, A.H. Elsheikh, Novel approach of the graphene nanolubricant for energy saving via antifriction/wear in automobile engines. Tribol. Int. 124, (2018) 209-229.
[46] M.K.A. Ali, X. Hou, M.A. Abdelkareem, Anti-wear properties evaluation of frictional sliding interfaces in automobile engines lubricated by copper/graphene nanolubricants. Friction, 8 (2020) 905-916.
[47] H. Xie, S. Dang, B. Jiang, L. Xiang, S. Zhou, H. Sheng, T. Yang, F. Pan, Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. App. Surf. Sci. 475 (2019) 847-856.
[48] S. Dey, G.C. Dhal, Highly active palladium nanocatalysts for low-temperature carbon monoxide oxidation. Polytechnica 3 (2020) 1-25.
[49] J. Lv, S. Wang, B. Meng, The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: a review. Energies 15 (2022) 1032.
[50] X. Zhang, N.T.L. Chi, C. Xia, A.S. Khalifa, K. Brindhadevi, Role of soluble nano-catalyst and blends for improved combustion performance and reduced greenhouse gas emissions in internal combustion engines. Fuel 312 (2022) 122826.
[51] M.E.M. Soudagar, N.-N. Nik-Ghazali, M.A. Kalam, I.A. Badruddin, N.R. Banapurmath, M.A. Bin Ali, S. Kamangar, H.M. Cho, N. Akram, An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics. Renew. Energy 146 (2020) 2291-2307.
[52] S.H. Hosseini, A. Taghizadeh-Alisaraei, B. Ghobadian, A. Abbaszadeh-Mayvan, Performance and emission characteristics of a ci engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renew. Energy 111 (2017) 201-213.
[53] S.S. Hoseini, G. Najafi, B. Ghobadian, M.T. Ebadi, R. Mamat, T. Yusaf,. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends. Renew. Energy 145 (2020) 458-465.
[54] K. Nanthagopal, R.S. Kishna, A.E. Atabani, A.H. Al-Muhtaseb, G. Kumar, B. Ashok, A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Convers. Manag. 203 (2020) 112244.
[55] X. Wang, M. Dai, J. Wang, Y. Xie, G. Ren, G. Jiang, Effect of ceria concentration on the evaporation characteristics of diesel fuel droplets. Fuel 236 (2019) 1577-1585.
[56] V. Sajith, C.B. Sobhan, G.P. Peterson, Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv. Mech. Eng. 2 (2010) 581407.
[57] P.I. Dolez, Nanomaterials definitions, classifications, and applications. In Nanoengineering, Elsevier, 2015, pp. 3-40.
[58] J.R. Xavier, Electrochemical and dynamic mechanical properties of polyurethane nanocomposite reinforced with functionalized TiO2-ZrO2 nanoparticles in automobile industry. App. Nanosci. (2022) 1-16.
[59] S. Maharjan, K.S. Liao, A.J. Wang, K. Barton, A. Haldar, N.J. Alley, H.J. Byrne, S.A. Curran, Self-cleaning hydrophobic nanocoating on glass: A scalable manufacturing process. Mater. Chem. Phy. 239 (2020) 122000.
[60] Z. Zhaowei, D.U. Quanbin, (2019). Study on magnetic field assisted electrodeposition of Ni-SiC nanocoatings on the surface of automobile cylinder liner. J. Func. Mater./Gongneng Cailiao, 50 (2019) 03081-03089.
[61] L. Xia, Y. Lv, Z. Miao, L. Luo, W. Luo, Y. Xu, C. Yuan B. Zeng, L. Dai, A flame retardant fabric nanocoating based on nanocarbon black particles@ polymer composite and its fire-alarm application. Chemical Engineering Journal, 433 (2022) 133501.
[62] B. Palen, T.J. Kolibaba, J.T. Brehm, R. Shen, Y. Quan, Q. Wang, J.C. Grunlan, J. C. Clay-filled polyelectrolyte complex nanocoating for flame-retardant polyurethane foam. ACS Omega, 6 (2021) 8016-8020.
[63] F. Yang, B. Yuan, Y. Wang, X. Chen, L. Wang, H. Zhang, Graphene oxide/chitosan nanocoating with ultrafast fire‐alarm response and flame‐retardant property. Polym. Adv. Technol. 33 (2022) 795-806.
[64] H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602 (2021) 756-766.
[65] C.M.P. Kumar, A. Lakshmikanthan, M.P.G. Chandrashekarappa, , D.Y. Pimenov, K. Giasin, Electrodeposition based preparation of Zn-Ni alloy and Zn-Ni-WC nanocomposite coatings for corrosion-resistant applications. Coatings 11 (2021) 712.
[66] A.A. Farag, (2020). Applications of nanomaterials in corrosion protection coatings and inhibitors. Corros. Rev. 38(1), 67-86.
[67] D.H. Abdeen, M. El Hachach, M. Koc, M.A. Atieh, A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials 12 (2019) 210.
[68] J.D. Maeztu, P.J Rivero, C. Berlanga, D.M. Bastidas, J.F. Palacio, R. Rodriguez, Effect of graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol-gel nanocoating for the design of corrosion resistant and hydrophobic surfaces. App. Surf. Sci. 419 (2017) 138-149.