Alternative Fuels in Rail Transport and their Impact on Fire Hazard

Alternative Fuels in Rail Transport and their Impact on Fire Hazard

RADZISZEWSKA-WOLIŃSKA Jolanta Maria

download PDF

Abstract. The interest in alternative fuels results from the depletion of crude oil resources and, thus, the search for new energy sources. The article discusses alternative power sources introduced into the drive of rail vehicles. Their advantages and disadvantages are presented, especially the uncontrolled ignitions cases are described. Attention is drawn to the need to develop European regulations on the fire safety of rail vehicles using hydrogen cells, lithium batteries, or natural gas. Such requirements are particularly relevant for rolling stock passing through tunnels. They should include alternative propulsion vehicles and the transport of such loads (e.g. discharged lithium batteries).

Keywords
Hydrogen Cells, Lithium Batteries, Natural Gas CNG and LNG, Fire Properties, Hybrid Rail Vehicles

Published online 7/20/2022, 9 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: RADZISZEWSKA-WOLIŃSKA Jolanta Maria, Alternative Fuels in Rail Transport and their Impact on Fire Hazard, Materials Research Proceedings, Vol. 24, pp 212-220, 2022

DOI: https://doi.org/10.21741/9781644902059-31

The article was published as article 31 of the book Terotechnology XII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] J. Siwiec. Zastosowanie wodorowych ogniw paliwowych w transporcie kolejowym, Problemy Kolejnictwa 190 (2021) 53-57. https://doi.org/10.36137/1906P
[2] M. Woliński. Zbiornik wodoru w samochodzie. Realne zagrożenie w pożarze? Zeszyty Naukowe SGSP 65 (2018) 47- 61.
[3] P. Daszkiewicz. Analiza wybranych napędów alternatywnych stosowanych w autobusach szynowych. Autobusy 6/2017 (2017) 143-146.
[4] W. Szada-Borzyszkowski. R. Bujaczek. Zagrożenia płynące ze stosowania paliw alternatywnych w samochodach. Autobusy 6/2014 (2014) 260-265.
[5] P. Huang, Q. Wang, Ke Li, P.Ping & J. Sun. The combustion behavior of large scale
lithium titanate battery. Scientific Reports 5 (2015) art. 7788. https://doi.org/10.1038/srep07788
[6] A. Lecocq. G. Gebrekidan. G. Marlair. Scenario-based prediction of Li-ion batteries fire-induced toxicity. Journal of Power Sources 316 (2016) 197-206. https://doi.org/10.1016/j.jpowsour.2016.02.090
[7] F. Larsson. P. Andersson. Characteristics of lithium-ion batteries during fire tests. Journal of Power Sources 271 (2014) 414-420. https://doi.org/10.1016/j.jpowsour.2014.08.027
[8] N. S. Spinner. S. G. Tuttl. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber. Journal of Power Sources 279 (2015) 713-721. https://doi.org/10.1016/j.jpowsour.2015.01.068
[9] D. Darnikowski, M. Mieloszyk. Investigation into the Lithium-Ion Battery Fire Resistance Testing Procedure for Commercial Use. Batteries 7 (2021) art. 44. https://doi.org/10.3390/batteries7030044
[10] K. Leszczuk. Bezpieczne LNG. Przegląd Pożarniczy 1/2014 (2014) 29-33.
[11] A.M. Glover, A.R. Baird, C.B. LaFleur. Hydrogen Fuel Cell Vehicles in Tunnels. Sandia National Laboratories. SAND2020-4507 R. April 2020.
[12] Publikacja informacyjna 11/1 Bezpieczne wykorzystanie wodoru jako paliwa w komercyjnych zastosowaniach przemysłowych. Polski Rejestr Statków S.A. Gdańsk. czerwiec 2021 https://www.prs.pl/uploads/p11i_pl.pdf
[13] P. Farsewicz. Powstanie europejski pociąg na ogniwa wodorowe. 12.04.2021. https://www.rynek-kolejowy.pl/mobile/powstanie-europejski-pociag-na-ogniwa-wodorowe-101922.html
[14] M. Usidus. Wsiąść do pociągu wodorowego. https://mlodytechnik.pl/technika/30054-wsiasc-do-pociagu-wodorowego
[15] R. Przybylski. Wodororowy boom na horyzoncie. Logistyka (online). 30.09.2021 https://logistyka.rp.pl/szynowy/art18971851-wodorowy-boom-na-horyzoncie
[16] M. Kwiatkowski. Płonące ogniwa. 31.03.2022 https://icpt.pl/plonace-ogniwa/
[17] T. Trąd. Zmniejszenie zagrożenia wybuchu baterii litowo-jonowych. 10.05.2018 https://www.sgs.pl/pl-pl/news/2018/05/baterie-jonowo-litowe
[18] Akumulator LTO. 31.03.2022 https://technoluxpro.com/pl/akkumulyatory/batarei/lto.html
[19] M. Dempsey. Train explosion leads to chemical release in downtown Houston. Houston Chronicle 24.04.2017. https://www.chron.com/news/houston-texas/houston/article/Train-explosion-leads-to-chemical-release-in-11095738.php#photo-12779955
[20] Kiedy zabraknie ropy. Ziemia na rozdrożu. 31.03.2022 https://ziemianarozdrozu.pl/encyklopedia/74/kiedy-zabraknie-ropy
[21] K. Wolongiewicz. Bateria litowo-jonowa – wszystko co musisz o niej wiedzieć. Świat Baterii. 31.03.2022. https://blog.swiatbaterii.pl/bateria-litowo-jonowa/
[22] A. Szulc. Jak działa akumulator litowo-jonowy? Teoria Elektryki. 31.03.2022. https://teoriaelektryki.pl/jak-dziala-akumulator-litowo-jonowy/
[23] Baza Wiedzy: Wady i zalety akumulatorów Li-Ion. BatLit. 31.03.2022. https://batlit.pl/zalety_i_wady_akumulatorow_liion
[24] Lokomotywa na LNG jeździ po Florydzie. gasHD.eu. 31.03.2022. http://gashd.eu/2019/07/29/lokomotywa-na-lng-jezdzi-po-florydzie/
[25] Szynobusy na gaz ziemny pojadą w Czeskich Karkonoszach. gasHD.eu. 31.03.2022. http://gashd.eu/2021/07/26/szynobusy-na-gaz-ziemny-pojada-w-czeskich-karkonoszach/
[26] Szynobus na LNG będzie jeździł we Włoszech. gadHD.eu. 31.03.2022. http://gashd.eu/2021/04/26/szynobus-na-lng-bedzie-jezdzil-we-wloszech/
[27] Pociąg na LNG dla Renfe zaprojektuje Segula. gasHD.eu. 31.03.2022. http://gashd.eu/2020/03/21/pociag-na-lng-dla-renfe-zaprojektuje-segula/
[28] Regulation (EC) No 79/2009 of the European Parliament and of the Council of 14 January 2009 on type-approval of hydrogen-powered motor vehicles, and amending Directive 2007/46/EC
[29] Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, the European Green Deal, Brussels, 11.12.2019 COM(2019) 640 final.
[30] TSI LOC&PAS – Commission Regulation (EU) No 1302/2014, of 18 November 2014 concerning a technical specification for interoperability relating to the ‘rolling stock — locomotives and passenger rolling stock’ subsystem of the rail system in the European Union, 02014R1302 — EN — 11.03.2020 — 004.001 — 1
[31] TSI WAG – Commission Regulation (EU) No 321/2013, of 13 March 2013, concerning the technical specification for interoperability relating to the subsystem ‘rolling stock — freight wagons’ of the rail system in the European Union and repealing Decision 2006/861/EC, 02013R0321 — EN — 11.03.2020 — 004.001 — 1
[32] Commission Regulation (EU) No 1303/2014 of 18 November 2014 concerning the technical specification for interoperability relating to ‘safety in railway tunnels’ of the rail system of the European Union. 02014R1303 — EN — 16.06.2019 — 002.001 — 1
[33] Regulation 2019/1243 – Adaptation of a number of legal acts providing for the use of the regulatory procedure with scrutiny to Articles 290 and 291 of the Treaty on the Functioning of the EU
[34] Regulation No 134 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of motor vehicles and their components with regard to the safety-related performance of hydrogen-fuelled vehicles (HFCV) [2019/795]
[35] Regulation No 100 of the Economic Commission for Europe of the United Nations (UNECE) — Uniform provisions concerning the approval of vehicles with regard to specific requirements for the electric power train [2015/505]
[36] ASME B31.12-2014 Hydrogen Piping and Pipeline Code
[37] EN 45545-1÷7- Railway applications – Fire protection on railway vehicles
[38] EN 50153 – Railway applications – Rolling stock – Protective provisions relating to electrical hazard
[39] EN 10204 – Metallic products – Types of inspection documents
[40] EN 15227 – Railway applications – Crashworthiness requieement for railway vehicle bodies
[41] ISO 12991:2012 Liquefied natural gas (LNG) – Tanks for on-board storage as a fuel for automotive vehicles
[42] NFPA 52 Vehicular Gaseous Fuel Systems Code. 2013
[43] NFPA 59A Standard for the Production, Storage and Handling of LNG. 2013