Polymer Natural Fibre Composites and its Mechanical Characterization


Polymer Natural Fibre Composites and its Mechanical Characterization

Manju Sri Anbupalani, Chitra Devi Venkatachalam, P. Manjula

Increasing environmental concern and the dynamic market demand is a driving force for eco-friendly materials, therefore researchers focus on developing biodegradable materials for various applications. Bio- composites are one such eco-friendly material utilizing the advantages of polymer matrix and natural fibre reinforcement. Natural fibre composites are replacing environmentally harmful synthetic materials with better mechanical properties and they have potential applications in different fields like biomedical applications, construction materials, defence, automobiles etc., In addition, they are economically feasible and require low energy for production. Analysing the mechanical characteristics of natural fibre reinforced polymers are crucial to fine tune their utilization and processing techniques. This chapter aims to provide an overview of the mechanical characteristics of NFCs reinforced polymer composites and the details of milestones made with them.

Composite Materials, Natural Fibres, Polymers, Mechanical Properties

Published online 4/10/2022, 18 pages

Citation: Manju Sri Anbupalani, Chitra Devi Venkatachalam, P. Manjula, Polymer Natural Fibre Composites and its Mechanical Characterization, Materials Research Foundations, Vol. 122, pp 238-255, 2022

DOI: https://doi.org/10.21741/9781644901854-10

Part of the book on Sustainable Natural Fiber Composites

[1] A.B. Strong, Fundamentals of composites manufacturing: materials, methods and applications, Society of Manufacturing Engineers2008.
[2] M. Zampaloni, F. Pourboghrat, S. Yankovich, B. Rodgers, J. Moore, L. Drzal, A. Mohanty, M. Misra, Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions, Composites Part A: Applied Science and Manufacturing 38(6) (2007) 1569-1580. https://doi.org/10.1016/j.compositesa.2007.01.001
[3] V.K. Thakur, M.K. Thakur, R.K. Gupta, Graft copolymers from cellulose: synthesis, characterization and evaluation, Carbohydrate polymers 97(1) (2013) 18-25. https://doi.org/10.1016/j.carbpol.2013.04.069
[4] Y. Xie, C.A. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Composites Part A: Applied Science and Manufacturing 41(7) (2010) 806-819. https://doi.org/10.1016/j.compositesa.2010.03.005
[5] S. Mukhopadhyay, R. Fangueiro, Physical modification of natural fibers and thermoplastic films for composites—a review, Journal of Thermoplastic Composite Materials 22(2) (2009) 135-162. https://doi.org/10.1177/0892705708091860
[6] M.J. John, R.D. Anandjiwala, Recent developments in chemical modification and characterization of natural fiber‐reinforced composites, Polymer composites 29(2) (2008) 187-207. https://doi.org/10.1002/pc.20461
[7] V. Thakur, A. Singha, M. Thakur, In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers, International Journal of Polymer Analysis and Characterization 17(1) (2012) 48-60. https://doi.org/10.1080/1023666X.2012.638470
[8] V. Thakur, A. Singha, M. Thakur, Modification of natural biomass by graft copolymerization, International Journal of Polymer Analysis and Characterization 17(7) (2012) 547-555. https://doi.org/10.1080/1023666X.2012.704561
[9] H. Akil, M. Omar, A. Mazuki, S. Safiee, Z.M. Ishak, A.A. Bakar, Kenaf fiber reinforced composites: A review, Materials & Design 32(8-9) (2011) 4107-4121. https://doi.org/10.1016/j.matdes.2011.04.008
[10] I. Singh, P.K. Rakesh, Processing of Green Composites, Springer2019.
[11] V.K. Thakur, M.K. Thakur, R.K. Gupta, raw natural fiber–based polymer composites, International Journal of Polymer Analysis and Characterization 19(3) (2014) 256-271. https://doi.org/10.1080/1023666X.2014.880016
[12] A. Shalwan, B. Yousif, In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres, Materials & Design 48 (2013) 14-24. https://doi.org/10.1016/j.matdes.2012.07.014
[13] P.K. Bajpai, I. Singh, J. Madaan, Development and characterization of PLA-based green composites: A review, Journal of Thermoplastic Composite Materials 27(1) (2014) 52-81. https://doi.org/10.1177/0892705712439571
[14] Z. Azwa, B. Yousif, A. Manalo, W. Karunasena, A review on the degradability of polymeric composites based on natural fibres, Materials & Design 47 (2013) 424-442. https://doi.org/10.1016/j.matdes.2012.11.025
[15] F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu, Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis, Polymer Degradation and Stability 93(1) (2008) 90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012
[16] P. Wambua, J. Ivens, I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics?, composites science and technology 63(9) (2003) 1259-1264. https://doi.org/10.1016/S0266-3538(03)00096-4
[17] F. Vilaseca, J. Mendez, A. Pelach, M. Llop, N. Canigueral, J. Girones, X. Turon, P. Mutje, Composite materials derived from biodegradable starch polymer and jute strands, Process Biochemistry 42(3) (2007) 329-334. https://doi.org/10.1016/j.procbio.2006.09.004
[18] T. Yu, J. Ren, S. Li, H. Yuan, Y. Li, Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites, Composites Part A: Applied Science and Manufacturing 41(4) (2010) 499-505. https://doi.org/10.1016/j.compositesa.2009.12.006
[19] A.K. Bledzki, A. Jaszkiewicz, D. Scherzer, Mechanical properties of PLA composites with man-made cellulose and abaca fibres, Composites Part A: Applied Science and Manufacturing 40(4) (2009) 404-412. https://doi.org/10.1016/j.compositesa.2009.01.002
[20] A. Bledzki, A. Jaszkiewicz, Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres–A comparative study to PP, Composites science and technology 70(12) (2010) 1687-1696. https://doi.org/10.1016/j.compscitech.2010.06.005
[21] K. Oksman, M. Skrifvars, J.-F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Composites science and technology 63(9) (2003) 1317-1324. https://doi.org/10.1016/S0266-3538(03)00103-9
[22] K.L. Pickering, M.A. Efendy, T.M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing 83 (2016) 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
[23] J. Holbery, D. Houston, Natural-fiber-reinforced polymer composites in automotive applications, Jom 58(11) (2006) 80-86. https://doi.org/10.1007/s11837-006-0234-2
[24] J. Summerscales, N.P. Dissanayake, A.S. Virk, W. Hall, A review of bast fibres and their composites. Part 1–Fibres as reinforcements, Composites Part A: Applied Science and Manufacturing 41(10) (2010) 1329-1335. https://doi.org/10.1016/j.compositesa.2010.06.001
[25] P.A. dos Santos, J.C. Giriolli, J. Amarasekera, G. Moraes, Natural fibers plastic composites for automotive applications, 8th Annual automotive composites conference and exhibition (ACCE 2008). Troy, MI: SPE Automotive & Composites Division, 2008, pp. 492-500.
[26] O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain, Progress report on natural fiber reinforced composites, Macromolecular Materials and Engineering 299(1) (2014) 9-26. https://doi.org/10.1002/mame.201300008
[27] P. Chen, C. Lu, Q. Yu, Y. Gao, J. Li, X. Li, Influence of fiber wettability on the interfacial adhesion of continuous fiber‐reinforced PPESK composite, Journal of applied polymer science 102(3) (2006) 2544-2551. https://doi.org/10.1002/app.24681
[28] X.-F. Wu, Y.A. Dzenis, Droplet on a fiber: geometrical shape and contact angle, Acta mechanica 185(3) (2006) 215-225. https://doi.org/10.1007/s00707-006-0349-0
[29] Q. Bénard, M. Fois, M. Grisel, Roughness and fibre reinforcement effect onto wettability of composite surfaces, Applied surface science 253(10) (2007) 4753-4758. https://doi.org/10.1016/j.apsusc.2006.10.049
[30] E. Sinha, S. Panigrahi, Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite, Journal of composite materials 43(17) (2009) 1791-1802. https://doi.org/10.1177/0021998309338078
[31] P. Heidi, M. Bo, J. Roberts, N. Kalle, The influence of biocomposite processing and composition on natural fiber length, dispersion and orientation, Journal of Materials Science and Engineering. A 1(2A) (2011) 190. https://doi.org/10.1155/2011/891940
[32] A.R. Sanadi, D.F. Caulfield, R.E. Jacobson, Agro-fiber thermoplastic composites, Paper and composites from agro-based resources (1997) 377-401.
[33] I. Ben Amor, H. Rekik, H. Kaddami, M. Raihane, M. Arous, A. Kallel, Effect of palm tree fiber orientation on electrical properties of palm tree fiber-reinforced polyester composites, Journal of composite materials 44(13) (2010) 1553-1568. https://doi.org/10.1177/0021998309353961
[34] P. Herrera-Franco, A. Valadez-Gonzalez, A study of the mechanical properties of short natural-fiber reinforced composites, Composites Part B: Engineering 36(8) (2005) 597-608. https://doi.org/10.1016/j.compositesb.2005.04.001
[35] P. Joseph, K. Joseph, S. Thomas, Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites, Composites science and Technology 59(11) (1999) 1625-1640. https://doi.org/10.1016/S0266-3538(99)00024-X
[36] J.E. Carpenter, M.H. Miao, P. Brorens, Deformation behaviour of composites reinforced with four different linen flax yarn structures, Advanced Materials Research, Trans Tech Publ, 2007, pp. 263-266. https://doi.org/10.4028/0-87849-466-9.263
[37] M. Khalfallah, B. Abbès, F. Abbès, Y. Guo, V. Marcel, A. Duval, F. Vanfleteren, F. Rousseau, Innovative flax tapes reinforced Acrodur biocomposites: a new alternative for automotive applications, Materials & Design 64 (2014) 116-126. https://doi.org/10.1016/j.matdes.2014.07.029
[38] I. Angelov, S. Wiedmer, M. Evstatiev, K. Friedrich, G. Mennig, Pultrusion of a flax/polypropylene yarn, Composites Part A: Applied Science and Manufacturing 38(5) (2007) 1431-1438. https://doi.org/10.1016/j.compositesa.2006.01.024
[39] R. Malkapuram, V. Kumar, Y.S. Negi, Recent development in natural fiber reinforced polypropylene composites, Journal of reinforced plastics and composites 28(10) (2009) 1169-1189. https://doi.org/10.1177/0731684407087759
[40] M.-p. Ho, H. Wang, J.-H. Lee, C.-k. Ho, K.-t. Lau, J. Leng, D. Hui, Critical factors on manufacturing processes of natural fibre composites, Composites Part B: Engineering 43(8) (2012) 3549-3562. https://doi.org/10.1016/j.compositesb.2011.10.001
[41] G. Francucci, E.S. Rodríguez, A. Vázquez, Experimental study of the compaction response of jute fabrics in liquid composite molding processes, Journal of Composite Materials 46(2) (2012) 155-167. https://doi.org/10.1177/0021998311410484
[42] M.S. Salit, M. Jawaid, N.B. Yusoff, M.E. Hoque, Manufacturing of natural fibre reinforced polymer composites, Springer2015. https://doi.org/10.1007/978-3-319-07944-8
[43] M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan, Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment, Composites Part A: Applied Science and Manufacturing 39(11) (2008) 1739-1747. https://doi.org/10.1016/j.compositesa.2008.08.002
[44] R. Karim, M.F. Rahman, M. Hasan, M.S. Islam, A. Hassan, Effect of Fiber Loading and Alkali Treatment on Physical and Mechanical Properties of Bagasse Fiber Reinforced Polypropylene Composites, Journal of Polymer Materials 30(4) (2013).
[45] M. Haque, R. Rahman, N. Islam, M. Huque, M. Hasan, Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber, Journal of Reinforced Plastics and Composites 29(15) (2010) 2253-2261. https://doi.org/10.1177/0731684409343324
[46] F. Shukor, A. Hassan, M. Hasan, M.S. Islam, M. Mokhtar, PLA/Kenaf/APP biocomposites: effect of alkali treatment and ammonium polyphosphate (APP) on dynamic mechanical and morphological properties, Polymer-Plastics Technology and Engineering 53(8) (2014) 760-766. https://doi.org/10.1080/03602559.2013.869827
[47] H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F. Arrakhiz, A. Qaiss, Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites, Materials & Design 51 (2013) 780-788. https://doi.org/10.1016/j.matdes.2013.04.092
[48] F.M. Salleh, A. Hassan, R. Yahya, A.D. Azzahari, Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites, Composites Part B: Engineering 58 (2014) 259-266. https://doi.org/10.1016/j.compositesb.2013.10.068
[49] F. Shukor, A. Hassan, M.S. Islam, M. Mokhtar, M. Hasan, Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites, Materials & Design (1980-2015) 54 (2014) 425-429. https://doi.org/10.1016/j.matdes.2013.07.095
[50] Y. El-Shekeil, S. Sapuan, M. Jawaid, O. Al-Shuja’a, Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly (vinyl chloride)/thermoplastic polyurethane poly-blend composites, Materials & Design 58 (2014) 130-135. https://doi.org/10.1016/j.matdes.2014.01.047
[51] K.-Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman, A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Composites Science and Technology 105 (2014) 15-27. https://doi.org/10.1016/j.compscitech.2014.08.032