Low Band-Gap Materials for Solar Cells

$30.00

Low Band-Gap Materials for Solar Cells

Yadavalli Venkata Durga Nageswar, Vaidya Jayathirtha Rao

Organic solar cells (OSCs) are discussed at length in terms of its performance leading to the generation of electricity. The key materials required for OSCs are the small organic molecules having donor and acceptor with suitable light absorption and electro-chemical properties of low energy band gap. Various structural scaffolds are highlighted with their structural design leading to film forming in an orderly manner and this morphology of film having a pivotal role in photo-induced charge separation, migration and collection at an electrode. Present day research informs that OSCs involving non fullerene based donors and acceptors are functioning with high photo conversion efficiency [PCE] of >17% and are promising candidates for practical applications.

Keywords
Organic Solar Cells, Low Band Gap, Energy Materials, Fullerene Acceptors, Photo Conversion Efficiency, Photovoltaic Parameters, Energy Transfer Process, Perovskite Solar Cells

Published online 11/15/2020, 60 pages

Citation: Yadavalli Venkata Durga Nageswar, Vaidya Jayathirtha Rao, Low Band-Gap Materials for Solar Cells, Materials Research Foundations, Vol. 88, pp 176-235, 2021

DOI: https://doi.org/10.21741/9781644901090-7

Part of the book on Materials for Solar Cell Technologies I

References
[1] Brian O’Regan, Michael Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737 – 740. https://doi.org/10.1038/353737a0
[2] Chen Yongsheng, Cao Yong, Yip Hin-Lap, Xia Ruoxi, Ding Liming, Xiao Zuo, Ke Xin, Wang Yanbo, Zhang Xin Organic and solution-processed tandem solar cells with 17.3% efficiency Science. 361 (2018) 1094–1098. https://doi.org/10.1126/science.aat2612
[3] Jianquan Zhang, Huei Shuan Tan, Xugang Guo, Antonio Facchetti and He Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors, Nature Energy, 3 (2018) 720-731. https://doi.org/10.1038/s41560-018-0181-5
[4] L. Dou, Y. Liu, Z. Hong, G. Li, and Y. Yang, Low-bandgap near-IR conjugated polymers/molecules for organic electronics, Chem. Rev. 115 (2015) 12633–12665. https://doi.org/10.1021/acs.chemrev.5b00165
[5] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Tsutomu Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131 (2009) 6050–6051. https://doi.org/10.1021/ja809598r
[6] Oleg V. Kozlov, Vlad G. Pavelyev, Hilde D. de Gier, Remco W. A. Havenith, Paul H.M. van Loosdrecht, Jan C. Hummelen, and Maxim S. Pshenichnikov, Ultrafast electron and hole transfer in bulkhetero junctions of low-bandgap polymers, Org. Photonics Photovolt. 4 (2016) 24–34. https://doi.org/10.1515/oph-2016-0003
[7] Qiaoshi An, Fujun Zhang, Lingliang Li, Jian Wang, Jian Zhang, Lingyu Zhou, Weihua Tang, Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules, ACS Appl. Materials & Interfaces, 6 (2014) 6537-6544. dx.doi.org/10.1021/am500074s
[8] Yuan Fang, Ajay K. Pandey, Alexandre M. Nardes, Nikos Kopidakis, Paul L. Burn, Paul Meredith, A narrow optical gap small molecule acceptor for organic solar cells, Adv. Energy Mater., 3 (2012) 54-59. https://doi.org/.1002/aenm.201200372
[9] Jianhua Liu, Yanming Sun, PreechaMoonsin, MartijnKuik, Christopher M. Proctor, Jason Lin, Ben B. Hsu, Vinich Promarak, Alan J. Heeger, and Thuc-Quyen Nguyen, Tri -Diketopyrrolopyrrole Molecular Donor Materials for High-Performance Solution-Processed Bulk Heterojunction Solar Cells, Adv.Mater.25 (2013) 5898-5903. https://doi.org/10.1002/adma.201302007
[10] Miao Yang, Xuewen Chen, Yingping Zou, Chunyue Pan, Bo Liu and Hong Zhong; A solution-processable D–A–D small molecule based on isoindigo for organic solar cells, J Mater Sci. 48 (2013)1014–1020. https://doi.org//10.1007/s10853-012-6831-2
[11] Cira Maglione, Antonio Carella, Roberto Centore, Patricia Chavez Patrick Leveque, Sadiara Fall, Nicolas Leclerc, Novel low bandgap phenothiazine functionalized DPP derivatives prepared by direct heteroarylation: Application in bulk heterojunction organic solar cells, Dyes & Pigments, 141 (2017) 169-178. http://dx.doi.org/10.1016/j.dyepig.2017.02.012
[12] Prabhat Gautam, Rajneesh Misra, Shahbaz A. Siddiqui, and Ganesh D. Sharma, Unsymmetrical Donor−Acceptor−Acceptor−π−Donor Type Benzothiadiazole-Based Small Molecule for a Solution Processed Bulk Heterojunction Organic Solar Cell, ACS Applied Mater., 7 (2015) 10283-10292. https://doi.org/10.1021/acsami.5b02250
[13] Mahalingavelar Paramasivam, Akhil Gupta, Aaron M. Raynor, Sheshanth V. Bhosale, K. Bhanuprakash and V. Jayathirtha Rao, Small band gap D-p-A-p-D benzothiadiazole derivatives with low-lying HOMO levels as potential donors for applications in organic photovoltaics: a combined experimental and theoretical investigation, RSC Adv., 4 (2014) 35318-35331. https://doi.org/10.1039/c4ra02700k
[14] B. Ananda Rao, K. Yesudas, G. Siva Kumar, K. Bhanuprakash, V. Jayathirtha Rao, G.D. Sharma and S. P. Singh, Application of solution processable squaraine dyes as electron donors for organic bulk-heterojunction solar cells; Photochem. Photobiol. Sci., 12 (2013) 1688–1699. https://doi.org/10.1039/c3pp50087j
[15] Mahalingavelar Paramasivam, Akhil Gupta, N. Jagadeesh Babu, K. Bhanuprakash, Sheshanath V. Bhosale and V. Jayathirtha Rao, Funnel shaped molecules containing benzo/pyrido[1,2,5]thiadiazole functionalities as peripheral acceptors for organic photovoltaic applications, RSC Adv., 6 (2016) 66978–66989. https://doi.org/10.1039/c6ra06616j
[16] Daobin Yang, Hisahiro Sasabe, Takeshi Sano, and Junji Kido, Low-Band-Gap Small Molecule for Efficient Organic Solar Cells with a Low Energy Loss below 0.6 eV and a High Open-Circuit Voltage of over 0.9 V, ACS Energy Lett., 2 (2017) 2021−2025. https://doi.org/10.1021/acsenergylett.7b00608
[17] Ming Cheng, Bo Xu, Cheng Chen, Xichuan Yang, Fuguo Zhang, Qin Tan, Yong Hua, Lars Kloo, and Licheng Sun, Phenoxazine-Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells, Adv. Energy Mater. (2015)1401720. https://doi.org/10.1002/aenm.201401720
[18] Kimin Lim, Seung Yeon Lee, Kihyung Song, G. D. Sharma and Jaejung Ko, Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA [DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells, J. Mater. Chem. C, 2 (2014) 8412-8422. https://doi.org/10.1039/c4tc01495b
[19] Bin Kan, Miaomiao Li, Qian Zhang, Feng Liu, Xiangjian Wan,Yunchuang Wang, Wang Ni, Guankui Long, Xuan Yang, Huanran Feng,Yi Zuo, Mingtao Zhang, Fei Huang, Yong Cao, Thomas P. Russell, and Yongsheng Chen, A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency, J. Am. Chem. Soc., 137 (2015) 3886-3893. https://doi.org/10.1021/jacs.5b00305
[20] Wang Ni, Miaomiao Li, Feng Liu, Xiangjian Wan, Huanran Feng, Bin Kan, Qian Zhang, Hongtao Zhang, and Yongsheng Chen, Dithienosilole-Based Small-Molecule Organic Solar Cells with an Efficiency over 8%: Investigation of the Relationship between the Molecular Structure and Photovoltaic Performance, Chem. Mater., 27 (2015) 6077-6084. https://doi.org/10.1021/acs.chemmater.5b02616
[21] Manohar Reddy Busireddy, Venkata Niladri Raju Mantena, Narendra Reddy Chereddy, Balaiah Shanigaram, Bhanuprakash Kotamarthi, Subhayan Biswas, Ganesh Datt Sharma and Jayathirtha Rao Vaidya, A dithieno[3,2-b:20,30-d]pyrrole based, NIR absorbing, solution processable, small molecule donor for efficient bulk heterojunction solar cells, Phys. Chem. Chem. Phys., 18 (2016) 32096-32106. https://doi.org/10.1039/c6cp06304g
[22] Manohar Reddy Busireddy, Venkata Niladri Raju Mantena, Narendra Reddy Chereddy, Balaiah Shanigaram, Bhanuprakash Kotamarthi, Subhayan Biswas, Ganesh Datt Sharma, and Jayathirtha Rao Vaidya, Dithienopyrrole-benzodithiophene based donor materials for small molecular BHJSCs: Impact of side chain and annealing treatment on their photovoltaic properties, Organic Electronics 37 (2016) 312 to 325. http://dx.doi.org/10.1016/j.orgel.2016.07.003
[23] Manohar Reddy Busireddy, Narendra Reddy Chereddy, Balaiah Shanigaram, Bhanuprakash Kotamarthi, Subhayan Biswas, Ganesh Datt Sharma and Jayathirtha Rao Vaidya, Dithieno[3,2-b:20,30-d]pyrrolebenzo[c][1,2,5]thiadiazole conjugate small molecule donors: effect of fluorine content on their photovoltaic properties, Phys. Chem. Chem. Phys. 19 ( 2017) 20513—20522. https://doi.org/10.1039/c7cp02729j
[24] Manohar Reddy Busireddy, Chakali Madhu, Narendra Reddy Chereddy, Ejjurothu Appalanaidu, Ganesh Datt Sharma, and Jayathirtha Rao Vaidya, Optimization of the Donor Material Structure and Processing Conditions to Obtain Efficient Small-Molecule Donors for Bulk Heterojunction Solar Cells, Chem. Photo.Chem. 2 (2018) 81 – 88. https://doi.org/10.1002/cptc.201700170
[25] Manohar Reddy Busireddy, Madhu Chakali, Gontu Ramanjaneya Reddy, Narendra Reddy Chereddy, Balaiah Shanigaram, Bhanuprakash Kotamarthi, Ganesh D. Sharma, and V. Jayathirtha Rao, Influence of the backbone structure of the donor material and device processing conditions on the photovoltaic properties of small molecular BHJSCs, Solar Energy 186 (2019) 84–93. https://doi.org/10.1016/j.solener.2019.05.001
[26] B. Ananda Rao, M. Sasi Kumar, G. Sivakumar, Surya Prakash Singh, K. Bhanuprakash, V. Jayathirtha Rao, and G. D. Sharma, Effect of Incorporation of Squaraine Dye on the Photovoltaic Response of Bulk Heterojunction Solar Cells Based on P3HT:PC70BM Blend, ACS Sustainable Chem. Eng. 2 (2014) 1743−1751. https://doi.org//10.1021/sc500276u
[27] Jae Woong Jung, and Won Ho Jo, Low Bandgap Small Molecule as Non-Fullerene Electron Acceptor Composed of Benzothiadiazole and Diketopyrrolopyrrole for All Organic Solar Cells, Chem. Mater., 27 (2015) 6038-6044. https://doi.org/10.1021/acs.chemmater.5b02480
[28] Christopher J. Takacs, Yanming Sun, Gregory C Welch, Louis A. Perez, Xiaofeng Liu, Wen Wen, Guillermo C. Bazan, and Alan J. Heeger, Solar cell efficiency, self-assembly and dipole-dipole interactions of isomorphic narrow bandgap molecules, J. Am. Chem. Soc., 134 (2012) 16597-16606. https://doi.org/10.1021/ja3050713
[29] Yuze Lin, Yongfang Li, and Xiaowei Zhan, A Solution-Processable Electron Acceptor Based on Dibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells, Adv. Energy Mater., 3 (2013) 724-728. https://doi.org/10.1002/aenm.201200911
[30] Wang Ni, Miaomiao Li, Bin Kan, Feng Liu, Xiangjian Wan, Qian Zhang, Hongtao Zhang, Thomas P Russell and Yongsheng Chen, Fullerene free small molecule organic solar cells with high open circuit voltage of 1.15V, Chem. Commun., 52 (2016) 465-468. https://doi.org/10.1039/C5CC07973J
[31] Feng Liu, Haijun Fan, Zhiguo Zhang, and Xiaozhang Zhu, Low-Bandgap Small-Molecule Donor Material Containing Thieno[3,4‑b]thiophene Moiety for High-Performance Solar Cells, ACS Applied Materials & Interfaces, 8 (2015) 3661-3668. https://doi.org/10.1021/acsami.5b08121
[32] Dongxue Liu, Ting Wang, Xin Ke, Nan Zheng, Zhitao Chang, Zengqi Xie and Yongsheng Liu, Ultra-narrow bandgap non-fullerene acceptors for organic solar cells with low energy loss, Mater. Chem. Front., 3(2019) 2157. https://doi.org/10.1039/c9qm00505f
[33] Yong Cui, Huifeng Yao, Jianqi Zhang, Tao Zhang, Yuming Wang, Ling Hong, Kaihu Xian, Bowei Xu, Shaoqing Zhang, Jing Peng, Zhixiang Wei, Feng Gao and Jianhui Hou, Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages, Nature Communications,15 (2019) 2515. https://doi.org/10.1038/s41467-019-10351-5
[34] Yankang Yang, Beibei Qiu, Shanshan Chen, Qiuju Zhou, Ying Peng, Zhi-Guo Zhang, Jia Yao, Zhenghui Luo, Xiaofeng Chen, Lingwei Xue, Liuliu Feng, ChangdukYang, Yongfang Li, J. Mater. Chem. A, 6 (2018) 9613-9622. https://doi.org/10.1039/C8TA01301B
[35] Bin Kan, Huanran Feng, Huifeng Yao, Meijia Chang, Xiangjian Wan, Chenxi Li, Jianhui Hou and Yongsheng Chen, A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss, Science China Chemistry, (2018) 1-7. https://doi.org/10.1007/s11426-018-9334-9
[36] Jiahui Wan, Xiaopeng Xu, Guangjun Zhang, Ying Li, Kui Feng and Qiang Peng, Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering, Energy & Environmental Science, 10 (2017) 1739-1745. https://doi.org/10.1039/c7ee00805h
[37] Huifeng Yao, Yu Chen, Yunpeng Qin, Runnan Yu, Yong Cui, Bei Yang, Sunsun Li, Kai Zhang, and Jianhui Hou, Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells, Adv. Mater., 28 (2016) 8283-8287. https://doi.org/10.1002/adma.201602642
[38] Liyan Yang, Shaoqing Zhang, Chang He, Jianqi Zhang, Huifeng Yao, Yang Yang, Yun Zhang, Wenchao Zhao, and Jianhui Hou, A New Wide Band Gap Donor for Efficient Fullerene free All-small-molecule Organic Solar Cells,; J.Am.Chem.Soc. 139 (2017) 1958-1956. https://doi.org/10.1021/jacs.6b11612
[39] Huifeng Yao, Yong Cui, Runnan Yu, Bowei Gao, Hao Zhang, and Jianhui Hou, Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap, Angew. Chem. Int. Ed. 56 (2017)3045 –3049. https://doi.org/10.1002/anie.201610944
[40] Oh Kyu Kwon, Jung-Hwa Park, Dong Won Kim, Sang Kyu Park, and Soo Young Park, An All-Small-Molecule Organic Solar Cell with High Efficiency Nonfullerene Acceptor, Adv.Mater.,27 ((2015)1951-1956. https://doi.org/10.1002/adma.201405429
[41] Dan Deng, Yajie Zhang, Jianqi Zhang, Zaiyu Wang, Lingyun Zhu, Jin Fang, Benzheng Xia, Zhen Wang, Kun Lu, Wei Ma and Zhixiang Wei, Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells, Nature Commun. 7 (2016)13740. https://doi.org/10.1038/ncomms13740
[42] Zhi Li, Guangrui He, Xiangjian Wan, Yongsheng Liu, Jiaoyan Zhou, Guankui Long, Yi Zuo, Mingtao Zhang, and Yongsheng Chen, Solution Processable Rhodanine-Based Small Molecule Organic Photovoltaic Cells with a Power Conversion Efficiency of 6.1%, Adv. Energy Mater. 2 (2012)74–77. https://doi.org/10.1002/aenm.201100572
[43] Huifeng Yao, Long Ye, Junxian Hou, Bomee Jang, Guangchao Han, Yong Cui, Gregory M. Su, Cheng Wang, Bowei Gao, Runnan Yu, Hao Zhang, Yuanping Yi, Han Young Woo, Harald Ade, and Jianhui Hou, Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Open-Circuit Voltage, Adv.Mater. 29 (2017) 1700254. https://doi.org/10.1002/adma.201700254
[44] Yunlong Ma, Meiqi Zhang, Yu Yan, Jingming Xin, Tao Wang, Wei Ma, Changquan Tang, and Qingdong Zheng, Ladder-Type Dithienonaphthalene-Based Small-Molecule Acceptors for Efficient Nonfullerene Organic Solar Cells, Chem. Mater. 29 (2017) 7942-7952. https://doi.org/10.1021/acs.chemmater.7b02887
[45] Yuze Lin, Fuwen Zhao, Shyamal K. K. Prasad, Jing-De Chen, Wanzhu Cai, Qianqian Zhang, Kai Chen, Yang Wu, Wei Ma, Feng Gao, Jian-Xin Tang, Chunru Wang, Wei You, Justin M. Hodgkiss, and Xiaowei Zhan, Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency, Adv.Mater.30 (2018) 1706363. https://doi.org/10.1002/adma.201706363
[46] Jie Zhang, Baofeng Zhao, Yuhua Mi, Hongli Liu, Zhaoqi Guo, Guojun Bie, Wei Wei, Chao Gao, and Zhongwei An, A New Wide Band gap Small Molecular Acceptor Based on Indenofluorene Derivatives for Fullerene-Free Organic Solar Cells, Dyes & Pigments, 140 (2017) 261-268. https://doi.org/10.1016/j.dyepig.2017.01.039
[47] Oh Kyu Kwon, Mohammad Afsar Uddin, Jung-Hwa Park, Sang Kyu Park,Thanh Luan Nguyen, Han Young Woo, and Soo Young Park, A High Efficiency Nonfullerene Organic Solar Cell with Optimized Crystalline Organizations, Adv.Mater. 28 (2015) 910-916. https://doi.org/10.1002/adma.201504091
[48] Sunsun Li, Long Ye, Wenchao Zhao, Shaoqing Zhang, HaraldAde, and Jianhui Hou, Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Small-Molecule Electron Acceptors for Photovoltaic Cells, Adv. Energy Mater. 7 (2017) 1700183. https://doi.org/10.1002/aenm.201700183
[49] Huanran Feng, Nailiang Qiu, Xian Wang, Yunchuang Wang, Bin Kan, Xiangjian Wan, Mingtao Zhang, Andong Xia, Chenxi Li, Feng Liu, Hongtao Zhang, and Yongsheng Chen, An A‑D‑A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells, Chem.Mater. 29 (2017) 7908-7917. https://doi.org/10.1021/acs.chemmater.7b02811
[50] Feng Liu, Zichun Zhou, Cheng Zhang, Thomas Vergote, Haijun Fan, Feng Liu, and Xiaozhang Zhu, A Thieno[3,4-b]thiophene-Based Non-Fullerene Electron Acceptor for High-Performance Bulk-Heterojunction Organic Solar Cells, J. Am. Chem. Soc. 138 (2016) 15523-15526, https://doi.org/10.1021/jacs.6b08523
[51] Yuvraj Patil, Rajneesh Misraa, M.L. Keshtov, Ganesh D. Sharma, Small molecule carbazole based diketopyrrolopyrroles with tetracyanobutadiene acceptor unit as Non-Fullerene Acceptor for Bulk Heterojunction Organic Solar Cells, J. Mater. Chem. A 5 (2017) 3311-3319. https://doi.org/10.1039/C6TA09607G
[52] Jia Sun, Xiaoling Ma, Zhuohan Zhang, Jiangsheng Yu, Jie Zhou, Xinxing Yin, Linqiang Yang, Renyong Geng, Rihong Zhu, Fujun Zhang, and Weihua Tang, Dithieno[3,2-b:2′,3′-d]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells, Adv.Mater. 30 (2018) 1707150. https://doi.org/10.1002/adma.201707150
[53] Zhuping Fei, Flurin D. Eisner, Xuechen Jiao, Mohammed Azzouzi, Jason A. Röhr, Yang Han, Munazza Shahid, Anthony S. R. Chesman, Christopher D. Easton, Christopher R. McNeill, Thomas D. Anthopoulos, Jenny Nelson, and Martin Heeney, An Alkylated Indacenodithieno[3,2-b]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses, Adv.Mater. 30 (2018) 1705209. https://doi.org/10.1002/adma.201705209.