Fabrication of TiO2 Materials for Lithium-ion Batteries


Fabrication of TiO2 Materials for Lithium-ion Batteries

Chang-Seop Lee, Hasan Jamal

Among transition metal oxides, TiO2 based materials are quite promising and extensively studied in lithium-ion batteries (LIBs) owing to their high safety, low cost, and low volume expansion (< 4%). In the present study, nanocomposites of TiO2 (nanoparticles, nanorods, nanofibers) with graphene (TiO2@rGO) were successfully synthesized by hydrothermal and calcination treatment. Coaxial SnO2@TiO2 nanotube arrays (SnO2@TNTs) were assembled through electrochemical fabrication technique using pristine TiO2 nanotube arrays (TNTs) and metallic-Sn. All as-synthesized products were applied as negative materials for LIBs. Their physicochemical properties were investigated via scanning and transmission electron microscope (SEM/TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy and Brunauer–Emmett–Teller (BET). Electrochemical testing was performed with galvanostatic charge/discharge system. TiO2 nanoparticles nanocomposites with rGO exhibited rate capacity of 155 mAhg-1 at C-rate of 0.5 C. After applying a high C-rate of 20 C, its rate capability was 109 mAhg-1 at 0.5 C, showing capacity loss of 30 %. Reversible capacity delivered by SnO2@TNTs was 113 µA h cm-2 at current density of 100 µA cm-2 after 50 cycles, higher than that by pristine TNTs (51.6 µA h cm-2).
TiO2 Nanostructure, Graphene, Lithium-ion Batteries, TiO2 Nanotube Arrays, Hydrothermal, Electrochemical Fabrication

Published online 7/25/2020, 27 pages

Citation: Chang-Seop Lee, Hasan Jamal, Fabrication of TiO2 Materials for Lithium-ion Batteries, Materials Research Foundations, Vol. 80, pp 1-27, 2020

DOI: https://doi.org/10.21741/9781644900918-1

Part of the book on Lithium-ion Batteries

[1] K. Wang, X. Li, J. Chen, Surface and interface engineering of electrode materials for lithium‐ion batteries, Adv. Mater. 27 (2015) 527-545. https://doi.org/10.1002/adma.201402962
[2] P. Zheng, T. Liu, Y. Su, L. Zhang, S. Guo, TiO2 nanotubes wrapped with reduced graphene oxide as a high-performance anode material for lithium-ion batteries, Sci. Rep. 6 (2016) 36580. https://doi.org/10.1038/srep36580
[3] M. Minella, D. Versaci, S. Casino, F. Di Lupo, C. Minero, A. Battiato, N. Penazzi, S. Bodoardo, Anodic materials for lithium-ion batteries: TiO2-rGO composites for high power applications, Electrochim. Acta 230 (2017) 132–140. https://doi.org/10.1016/j.electacta.2017.01.190
[4] P. Xiong, L. Peng, D. Chen, Y. Zhao, X. Wang, G. Yu, Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility, Nano Energy 12 (2015) 816-823. https://doi.org/10.1016/j.nanoen.2015.01.044
[5] D. Ma, Z. Cao, A. Hu, Si-based anode materials for Li-ion batteries: A mini review, Nano-Micro Letters 6 (2014) 347-358. https://doi.org/10.1007/s40820-014-0008-2
[6] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources 257 (2014) 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
[7] L. Bai, F. Fang, Y. Zhao, Y. Liu, J. Li, G. Huang, H. Sun, A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes, RSC Adv. 4 (2014) 43039-43046. https://doi.org/10.1039/C4RA04979A
[8] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: Present and future, Mater. Today 18 (2015) 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
[9] X. Zheng, J. Li, A review of research on hematite as anode material for lithium-ion batteries, Ionics 20 (2014) 1651-1663. https://doi.org/10.1007/s11581-014-1262-5
[10] V.J. Babu, S. Vempati, T. Uyar, S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation, Phys. Chem. Chem. Phys. 17 (2015) 2960-2986. https://doi.org/10.1039/C4CP04245J
[11] X. Li, Y. Zhang, T. Li, Q. Zhong, H. Li, J. Huang, Graphene nanoscrolls encapsulated TiO2 (B) nanowires for lithium storage, J. Power Sources 268 (2014) 372-378. https://doi.org/10.1016/j.jpowsour.2014.06.056
[12] J. Jin, S. Huang, J. Liu, Y. Li, D. Chen, H. Wang, Y. Yu, L. Chen, B. Su, Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries, J. Mater. Chem. A 2 (2014) 9699-9708. https://doi.org/10.1039/c4ta01775g
[13] H. Jamal, B. Kang, H. Lee, J. Yu, C. Lee, Comparative studies of electrochemical performance and characterization of TiO2/graphene nanocomposites as anode materials for Li-secondary batteries, Journal of Industrial and Engineering Chemistry 64 (2018) 151-166. https://doi.org/10.1016/j.jiec.2018.03.012
[14] L. Yu, Z. Wang, L. Zhang, H.B. Wu, X.W.D. Lou, TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries, Journal of Materials Chemistry A 1 (2013) 122-127. https://doi.org/10.1039/C2TA00223J
[15] Z. Xiu, X. Hao, Y. Wu, Q. Lu, S. Liu, Graphene-bonded and-encapsulated mesoporous TiO2 microspheres as a high-performance anode material for lithium ion batteries, J. Power Sources 287 (2015) 334-340. https://doi.org/10.1016/j.jpowsour.2015.04.086
[16] G. Zhu, Y. Wang, Y. Xia, Ti-based compounds as anode materials for Li-ion batteries, Energy & Environmental Science 5 (2012) 6652-6667. https://doi.org/10.1039/c2ee03410g
[17] W. Wei, G. Oltean, C. Tai, K. Edström, F. Björefors, L. Nyholm, High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries, Journal of Materials Chemistry A 1 (2013) 8160-8169. https://doi.org/10.1039/c3ta11273j
[18] Y. Liu, Y. Yang, Recent progress of TiO2-based anodes for Li ion batteries, Journal of Nanomaterials 2016 (2016) 2. https://doi.org/10.1155/2016/8123652
[19] P. Bottke, Y. Ren, I. Hanzu, P.G. Bruce, M. Wilkening, Li ion dynamics in TiO2 anode materials with an ordered hierarchical pore structure–insights from ex situ NMR, Physical Chemistry Chemical Physics 16 (2014) 1894-1901. https://doi.org/10.1039/C3CP54586E
[20] D. Yuan, W. Yang, J. Ni, L. Gao, Sandwich structured MoO2@TiO2@CNT nanocomposites with high-rate performance for lithium ion batteries, Electrochim. Acta 163 (2015) 57-63. https://doi.org/10.1016/j.electacta.2015.02.149
[21] C. Yang, Z. Wang, T. Lin, H. Yin, X. Lü, D. Wan, T. Xu, C. Zheng, J. Lin, F. Huang, Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping, J. Am. Chem. Soc. 135 (2013) 17831-17838. https://doi.org/10.1021/ja4076748
[22] T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc. 7 (1978) 321–324. https://doi.org/10.1002/jrs.1250070606
[23] H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes, J. Am. Chem. Soc. 137 (2015) 13161-13166. https://doi.org/10.1021/jacs.5b08743
[24] X. Tong, M. Zeng, J. Li, F. Li, UV-assisted synthesis of surface modified mesoporous TiO2/G microspheres and its electrochemical performances in lithium ion batteries, Appl. Surf. Sci. 392 (2017) 897–903. https://doi.org/10.1016/j.apsusc.2016.09.094
[25] A. Razzaq, C.A. Grimes, S. Il In, Facile fabrication of a noble metal-free photocatalyst: TiO2 nanotube arrays covered with reduced graphene oxide, Carbon N. Y. 98 (2016) 537–544. https://doi.org/10.1016/j.carbon.2015.11.053
[26] S. Yang, X. Feng, K. Müllen, Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage, Adv. Mater. 23 (2011) 3575–3579. https://doi.org/10.1002/adma.201101599
[27] H. Liu, K. Cao, X. Xu, L. Jiao, Y. Wang, H. Yuan, Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries, ACS Appl. Mater. Interfaces. 7 (2015) 11239–11245. https://doi.org/10.1021/acsami.5b02724
[28] N.D. Petkovich, B.E. Wilson, S.G. Rudisill, A. Stein, Titania-carbon nanocomposite anodes for lithium ion batteries – Effects of confined growth and phase synergism, ACS Appl. Mater. Interfaces. 6 (2014) 18215–18227. https://doi.org/10.1021/am505210c
[29] Y. Xie, J. Song, P. Zhou, Y. Ling, Y. Wu, Controllable Synthesis of TiO2/Graphene Nanocomposites for Long Lifetime Lithium Storage: Nanoparticles vs. Nanolayers, Electrochim. Acta. 210 (2016) 358–366. https://doi.org/10.1016/j.electacta.2016.05.157
[30] R. Mo, Z. Lei, K. Sun, D. Rooney, Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries, Adv. Mater. 26 (2014) 2084–2088. https://doi.org/10.1002/adma.201304338
[31] X. Wu, S. Zhang, L. Wang, Z. Du, H. Fang, Y. Ling, Z. Huang, Coaxial SnO2@TiO2 nanotube hybrids: From robust assembly strategies to potential application in Li+ storage, J. Mater. Chem. 22 (2012) 11151–11158. https://doi.org/10.1039/c2jm30885a