Biomass Derived Composites for Energy Storage

$30.00

Biomass Derived Composites for Energy Storage

Pitchaimani Veerakumar and King-Chuen Lin

Recently, biomass-derived valuable carbon structures have become a research focus that offer multiple contributions to electrochemical energy storage. This book chapter reveals the nanostructured materials synthesized from plant-based biomass in the design of high-performance superconductors. Encountering of challenges and limitations for better achievement have been discussed from the point-of-view of materials preparation. The aim of this chapter is to offer an overview of the prior studies of the common types of biomass-related carbons, their potential advantages in supercapacitor applications, and the relationship of electrochemical properties of biomass-derived carbon materials and their structures.

Keywords
Biomass, Porous Carbons, Supercapacitors, Energy Storage, Energy Density, Power Density

Published online 6/20/2020, 41 pages

Citation: Pitchaimani Veerakumar and King-Chuen Lin, Biomass Derived Composites for Energy Storage, Materials Research Foundations, Vol. 78, pp 50-90, 2020

DOI: https://doi.org/10.21741/9781644900871-3

Part of the book on Biomass Based Energy Storage Materials

References
[1] M.-M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44 (2015) 250–290. https://doi.org/10.1039/C4CS00232F
[2] M.R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications, Chem. Soc. Rev. 47 (2018) 2680–2721. https://doi.org/10.1039/C7CS00787F
[3] L. Estevez, D. Barpaga, J. Zheng, S. Sabale, R.L Patel, J.G. Zhang, B.P. McGrail, R.K. Motkuri, Hierarchically porous carbon materials for CO2 capture: The role of pore structure, Ind. Eng. Chem. Res. 57 (2018) 1262–1268. https://doi.org/10.1021/acs.iecr.7b03879
[4] A. Sahasrabudhe, S. Kapri, S. Bhattacharyya, Graphitic porous carbon derived from human hair as ‘green’ counter electrode in quantum dot sensitized solar cells, Carbon 107 (2016) 395–404. https://doi.org/10.1016/j.carbon.2016.06.015
[5] Beguin, F. (Ed.), Frackowiak, E. (Ed.). Carbons for electrochemical energy storage and conversion systems, Boca Raton: CRC Press, 2010. https://doi.org/10.1201/9781420055405
[6] A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery fundamentals and applications, CRC Press, 2013.
[7] Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev. 45 (2016) 5925–5950. https://doi.org/10.1039/C5CS00580A
[8] A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta 53 (2007) 1083–1091. https://doi.org/10.1016/j.electacta.2007.01.011
[9] T. Brousse, M. Toupin, D. Belanger,A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem. Soc. 152 (2004) A614–A622. https://doi.org/10.1149/1.1650835
[10] F.X. Ma, L. Yu, C.Y. Xu, X.W. Lou, Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties, Energy Environ. Sci. 9 (2016) 862–866. https://doi.org/10.1039/C5EE03772G
[11] X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage, Adv. Energy Mater. 6 (2016) 1501333. https://doi.org/10.1002/aenm.201501333
[12] L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk‐shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries, Adv. Energy Mater. 5 (2015) 1500981. https://doi.org/10.1002/aenm.201500981
[13] Y. Guo, L. Yu, C.Y. Wang, Z. Lin, X.W. Lou, Hierarchical tubular structures composed of Mn‐based mixed metal oxide nanoflakes with enhanced electrochemical properties, Adv. Funct. Mater. 25 (2015) 5184–5189. https://doi.org/10.1002/adfm.201501974
[14] Y.M. Chen, Z. Li, X.W. Lou, General formation of MxCo3−xS4 (M=Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors, Angew. Chem. Int. Ed. 54 (2015) 10521–10524. https://doi.org/10.1002/anie.201504349
[15] L. Liu, Z. Niu, J. Chen, Flexible supercapacitors based on carbon nanotubes, Chin. Chem. Lett. 29 (2018) 571–581. https://doi.org/10.1016/j.cclet.2018.01.013
[16] A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review, Renew. Sust. Energ. Rev. 52 (2015) 1282–1293. https://doi.org/10.1016/j.rser.2015.07.129
[17] P. Kossyrev, Carbon black supercapacitors employing thin electrodes, J. Power Sources 201 (2012) 347–352. https://doi.org/10.1016/j.jpowsour.2011.10.106
[18] X. Yu, J.G. Wang, Z.H. Huang, W. Shen, F. Kang, Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors, Electrochem. Commun. 36 (2013) 66–70. https://doi.org/10.1016/j.elecom.2013.09.010
[19] P. Suktha, P. Chiochan, P. Iamprasertkun, J. Wutthiprom, N. Phattharasupakun, M. Suksomboon, T. Kaewsongpol, P. Sirisinudomkit, T. Pettong, M. Sawangphruk, High-performance supercapacitor of functionalized carbon fiber paper with high surface ionic and bulk electronic conductivity: Effect of organic functional groups, Electrochim. Acta 176 (2015) 504–513. https://doi.org/10.1016/j.electacta.2015.07.044
[20] F.Y. Zeng, Z.Y. Sui, S. Liu, H.P. Liang, H.H. Zhan, B.-H. Han, Nitrogen-doped carbon aerogels with high surface area for supercapacitors and gas adsorption, Mater. Today Commun. 16 (2018) 1–7. https://doi.org/10.1016/j.mtcomm.2018.03.015
[21] H. Sheng, M. Wei, A. D’Aloia, G. Wu, Heteroatom polymer-derived 3D high-surface-Area and mesoporous graphene sheet-like carbon for supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 30212–30224. https://doi.org/10.1021/acsami.6b10099
[22] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes A review, J. Materiomics 2 (2016) 37–54. https://doi.org/10.1016/j.jmat.2016.01.001
[23] S. Yue-feng, W. Feng, B. Liying, Y. Zhao-hui, RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor, New Carbon Mater. 22 (2007) 53–58. https://doi.org/10.1016/S1872-5805(07)60007-9
[24] P. Jeżowski, K. Fic, O. Crosnier, T. Brousse, F. Béguin, Lithium rhenium(VII) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors, J. Mater. Chem. A 4 (2016) 12609–12615. https://doi.org/10.1039/C6TA03810G
[25] M.S. Yadav, S.K. Tripathi, Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application, Ionics 23 (2017) 2919–2930. https://doi.org/10.1007/s11581-017-2026-9
[26] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode, materials, Nano Energy 36 (2017) 268–285. https://doi.org/10.1016/j.nanoen.2017.04.040
[27] C. Wang, T. Liu, Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor, J. Alloys. Compd. 696 (2017) 42–50. https://doi.org/10.1016/j.jallcom.2016.11.206
[28] M.-S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting, Mater. Today 20 (2017) 425–451. https://doi.org/10.1016/j.mattod.2017.03.019
[29] N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater. Today 18 (2015) 252–264. https://doi.org/10.1016/j.mattod.2014.10.040
[30] H.C. Chang, H.Y. Chang, W.J. Su, K.Y. Lee, W.C. Shih, Preparation and electrochemical characterization of NiO nanostructure-carbon nanowall composites grown on carbon cloth, Appl. Surf. Sci. 258 (2012) 8599–8602. https://doi.org/10.1016/j.apsusc.2012.05.057
[31] Y. Xia, W. Zhang, Z. Xiao, H. Huang, H. Zeng, X. Chen, F. Chen, Y. Gan, X. Tao, Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries, J. Mater. Chem. 22 (2012) 9209–9215. https://doi.org/10.1039/c2jm16935e
[32] R. Madhu, V. Veeramani, S.M. Chen, P. Veerakumar, S.-B. Liu, Functional porous carbon/nickel oxide nanocomposites as binder-free electrodes for supercapacitors, Chem. Eur. J. 21 (2015) 8200–8206. https://doi.org/10.1002/chem.201500247
[33] S.T. Senthilkumar, R. Kalai Selvan, J.S. Melo, The biomass derived activated carbon for supercapacitor, AIP Conf. Proc. 1538 (2013) 124–127. https://doi.org/10.1063/1.4810042
[34] Z. Gao, Y. Zhang, N. Song, X. Li, Biomass-derived renewable carbon materials for electrochemical energy storage, Mater. Res. Lett. 5 (2017) 69–88. https://doi.org/10.1080/21663831.2016.1250834
[35] Y.P. Gao,Z.-B. Zhai, K.J. Huang, Y.Y. Zhang, Energy storage applications of biomass-derived carbon materials: Batteries and supercapacitors, New J. Chem. 41 (2017) 11456–11470. https://doi.org/10.1039/C7NJ02580G
[36] R.B. Marichi, V. Sahu, R.K. Sharma, G. Singh, Efficient, sustainable, and clean energy storage in supercapacitors using biomass derived carbon materials, Springer International Publishing AG 2018 L.M.T. Martínez et al. (eds.), Handbook of Ecomaterials. https://doi.org/10.1007/978-3-319-48281-1_155-1
[37] J. Deng, M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion, Green Chem. 18 (2016) 4824–4854. https://doi.org/10.1039/C6GC01172A
[38] S. Zhou, L. Zhou, Y. Zhang, J. Sun, J. Wen, Y. Yuan. Upgrading earth-abundant biomass into three dimensional carbon materials for energy and environmental applications, J. Mater. Chem. A 7 (2019) 4217–4229. https://doi.org/10.1039/C8TA12159A
[39] A.M. Jacob, V.B. Igor, The potential of biomass in the production of clean transportation fuels and base chemicals. Production and purification of ultraclean transportation fuels: American Chem. Soc. (2011) 65–77. https://doi.org/10.1021/bk-2011-1088.ch005
[40] P. González-García, T.A. Centeno, E. Urones-Garrote, D. Ávila-Brande, L.C. Otero-Díaz, Microstructure and surface properties of lignocellulosic-based activated carbons. Appl. Surf. Sci. 265 (2013) 731–737. https://doi.org/10.1016/j.apsusc.2012.11.092
[41] R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J.G. Manjunatha, M.M. Ishak, B.N.M. Dollah, S.A. Hashmiet, Preparation of highly porous binder less activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresour. Technol. 132 (2013) 254–261. https://doi.org/10.1016/j.biortech.2013.01.044
[42] A.E. Ismanto, S. Wang, F.E. Soetaredjo, S. Ismadji, Preparation of capacitor’s electrode from cassava peel waste, Bioresour. Technol. 101 (2010) 3534–3540. https://doi.org/10.1016/j.biortech.2009.12.123
[43] B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y, Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Mater. Chem. Phys. 124 (2010) 504–509. https://doi.org/10.1016/j.matchemphys.2010.07.002
[44] T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources 195 (2010) 912–918. https://doi.org/10.1016/j.jpowsour.2009.08.048
[45] W.J. Si, X.Z. Wu, W. Xing, J. Zhou, S.P. Zhuo, Bagasse-based nanoporous carbon for supercapacitor application, J. Inorg. Mater. 26 (2011) 107–112. https://doi.org/10.3724/SP.J.1077.2010.10376
[46] K.Y. Foo, B.H. Hameed, Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresour. Technol. 102 (2011) 9814–9817. https://doi.org/10.1016/j.biortech.2011.07.102
[47] X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, Efficient preparation of biomass based mesoporous carbons for supercapacitors with both high energy density and high power density, J. Power Sources 240 (2013) 109–113. https://doi.org/10.1016/j.jpowsour.2013.03.174
[48] X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q Lu, Preparation of capacitor’s electrode from sunflower seed shell, Bioresour. Technol. 102 (2011) 1118–1123. https://doi.org/10.1016/j.biortech.2010.08.110
[49] J.M. Valente Nabais, J.G. Teixeira, I. Almeida, Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors, Bioresour. Technol. 102 (2011) 2781–2787. https://doi.org/10.1016/j.biortech.2010.11.083
[50] E. Taer, M. Deraman, I.A. Talib, A. Awitdrus, S.A. Hashmi, A.A. Umar, Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors, Int. J. Electrochem. Sci. 6 (2011) 3301–3315.
[51] K.Y. Foo, B.H. Hameed, Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination 275 (2011) 302–305. https://doi.org/10.1016/j.desal.2011.03.024
[52] K.Y. Foo, B.H. Hameed, Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation, Bioresour. Technol. 130 (2013) 696–702. https://doi.org/10.1016/j.biortech.2012.11.146
[53] S. Bhoyate, C.K. Ranaweera, C. Zhang, T. Morey, M. Hyatt, P.K. Kahol, M. Ghimire, S.R. Mishra, R.K. Gupta, Eco-friendly and high performance supercapacitors for elevated temperature applications using recycled tea leaves. Global Challenges 1 (2017) 1700063. https://doi.org/10.1002/gch2.201700063
[54] H. Wang, H. Yi, X. Chen, X. Wang, Asymmetric supercapacitors based on nanoarchitectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance, J. Mater. Chem. A 2 (2014) 3223–3230. https://doi.org/10.1039/C3TA15046A
[55] H. Lu, X.S. Zhao, Biomass-derived carbon electrode materials for supercapacitors, Sustain. Energ. Fuels 1 (2017) 1265–1281. https://doi.org/10.1039/C7SE00099E
[56] H. Yang, M. Yoshio, K. Isono, R. Kuramoto, Improvement of commercial activated carbon and its application in electric double layer capacitors, Electrochem. Solid-State Lett. 5 (2002) A141–A144. https://doi.org/10.1149/1.1477297
[57] H. Teng, Y-J.C. Chien, To hsieh performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon 39 (2001) 1981–1987. https://doi.org/10.1016/S0008-6223(01)00027-6
[58] B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater. Chem. Phys. 124 (2010) 504–509. https://doi.org/10.1016/j.matchemphys.2010.07.002
[59] I.I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, Preparation and characterisation of activated carbon from waste tea using K2CO3, Biomass Bioenergy 37 (2012) 73–81. https://doi.org/10.1016/j.biombioe.2011.12.030
[60] S. Aber, A. Khataee, M. Sheydaei, Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresour. Technol. 100 (2009) 6586–6591. https://doi.org/10.1016/j.biortech.2009.07.074
[61] M. Benadjemia, L. Millière, L. Reinert, N. Benderdouche, L. Duclaux, Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process Technol. 92 (2011) 1203–1212. https://doi.org/10.1016/j.fuproc.2011.01.014
[62] B.S. Lou, P. Veerakumar, S.M. Chen, V. Veeramani, R. Madhu, S.-B. Liu, Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors, Sci. Rep. 6 (2016) 19949. https://doi.org/10.1038/srep19949
[63] S. Karagoz, T. Tay, S. Ucar, M. Erdem. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresource Technol. 99 (2008) 6214–6222. https://doi.org/10.1016/j.biortech.2007.12.019
[64] P. Alvarez, C. Blanco, M. Granda, The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues, J. Hazard. Mater 144 (2007) 400–405. https://doi.org/10.1016/j.jhazmat.2006.10.052
[65] K. Gadkaree, M. Jaroniec, Pore structure development in activated carbon honeycombs, Carbon 38 (2000) 983–993. https://doi.org/10.1016/S0008-6223(99)00204-3
[66] C. Moreno-Castilla, M. Ferro-Garcia, J. Joly, I. Bautista-Toledo, F. Carrasco-Marin, J. Rivera-Utrilla, Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments, Langmuir 11 (1995) 4386–4392. https://doi.org/10.1021/la00011a035
[67] J.M. Valente Nabais, J.G. Teixeira, I. Almeida, Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors, Bioresour Technol. 102 (2011) 2781–2787. https://doi.org/10.1016/j.biortech.2010.11.083
[68] P. Veerakumar, T. Maiyalagan, B.G. Sundara Raj, K. Guruprasad, Z. Jiang K.-C, Lin, Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications, Arab. J. Chem. 2018.
[69] F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, Effects of pore structure and electrolyte on the capacitive characteristics of steam and KOH-activated carbons for supercapacitors, J Power Sources 144 (2005) 302–309. https://doi.org/10.1016/j.jpowsour.2004.12.020
[70] P. Zhang, F. Sun, Z. Shen, D. Cao, ZIF-derived porous carbon: A promising supercapacitor electrode material, J. Mater. Chem. A 2 (2014)12873–12880. https://doi.org/10.1039/C4TA00475B
[71] A. Halama, B. Szubzda, G. Pasciak, Carbon aerogels as electrode material for electrical double layer supercapacitors synthesis and properties, Electrochim. Acta 55 (2010) 7501–7505. https://doi.org/10.1016/j.electacta.2010.03.040
[72] C. Wang, T. Liu, Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor, J. Alloy. Compd. 696 (2017) 42–50. https://doi.org/10.1016/j.jallcom.2016.11.206
[73] W. Chen, H. Zhang, Y. Huang, W. Wang, A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors, J Mater Chem. 20 (2010) 4773–4775. https://doi.org/10.1039/c0jm00382d
[74] D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra, N.G. Renganathan, Recycled waste paper–a new source of raw material for electric double-layer capacitors, J. Power Sources 190 (2009) 587–591. https://doi.org/10.1016/j.jpowsour.2009.01.058
[75] K. Sun, Q. Huang, Y. Chi, J. Yan,Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed wasteplastics for producing aromatic-enriched oil, Waste Manage. 81 (2018) 128–137. https://doi.org/10.1016/j.wasman.2018.09.054
[76] R. Chen, L. Li, Z. Liu, M. Lu, C. Wang, H. Li,W. Ma, S. Wang, Preparation and characterization of activated carbons fromtobacco stem by chemical activation, J. Air. Waste. Manag. Assoc. 67 (2017)713–724. https://doi.org/10.1080/10962247.2017.1280560
[77] M. Gao, S.Y. Pan, W.C. Chen, P.C. Chiang, A cross-disciplinary overview of naturally derived materials for electrochemical energy storage, Mater Today Energy 7 (2018) 58–79. https://doi.org/10.1016/j.mtener.2017.12.005
[78] G. Zhang, Y. Chen, Y. Chen, H. Guo, Activated biomass carbon made from bamboo as electrode material for supercapacitors, Mater. Res. Bul. 102 (2018) 391–398. https://doi.org/10.1016/j.materresbull.2018.03.006
[79] H. Sun, W. He, C. Zong, L. Lu, Template-free synthesis of renewable macroporous carbon via yeast cells for high performance supercapacitor electrode materials. ACS Appl. Mater. Interfaces 5 (2013) 2261–2268. https://doi.org/10.1021/am400206r
[80] Y.T. Li, Y.T. Pi, L.M. Lu, S.H. Xu, T.Z. Ren, Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance, J. Power Sources 299 (2015) 519–528. https://doi.org/10.1016/j.jpowsour.2015.09.039
[81] X.L. Su, J.R. Chen, G.P. Zheng, J.H. Yang, X.X. Guan, P. Liu, X.C. Zheng, Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications, Appl. Surf. Sci. 436 (2018) 327–336. https://doi.org/10.1016/j.apsusc.2017.11.249
[82] K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Promising biomass based activated carbons derived from willow catkins for high performance supercapacitors, Electrochim. Acta 166 (2015) 1–11. https://doi.org/10.1016/j.electacta.2015.03.048
[83] R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance, ACS Appl. Mater. Interfaces 4 (2012) 5800–5806. https://doi.org/10.1021/am302077c
[84] C. Peng, X.B. Yan, R.T. Wang, J.W. Lang, Y.J. Ou, Q.J Xue, Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochim. Acta 87 (2013) 401–408. https://doi.org/10.1016/j.electacta.2012.09.082
[85] P. Veerakumar, C. Rajkumar, S.M. Chen, B. Thirumalraj, K.C. Li, Activated porous carbon supported rhenium composites as electrode materials for electrocatalytic and supercapacitor applications, Electrochim. Acta 271 (2018) 433–447. https://doi.org/10.1016/j.electacta.2018.03.165
[86] X. Zhu, S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen, Z. Shen, B. Bao, S. Fu. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials, Chem. Eng. Sci. 181 (2018) 36–45. https://doi.org/10.1016/j.ces.2018.02.004
[87] D. Bhattacharjya, J.S. Yu, Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor, J Power Sources 262 (2014) 224–231. https://doi.org/10.1016/j.jpowsour.2014.03.143
[88] J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano 9 (2015) 2556–2564. https://doi.org/10.1021/nn506394r
[89] W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors, Energy Environ Sci. 7 (2014) 379–386. https://doi.org/10.1039/C3EE43111H
[90] H. Feng, M. Zheng, H. Dong, Y. Xiao, H. Hu, Z. Sun, C. Long, Y. Cai, X. Zhao, H. Zhang, B. Lei, Y. Liu, Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high ash-content sewage sludge, J Mater Chem A. 3 (2015) 15225–15234. https://doi.org/10.1039/C5TA03217B
[91] S.K. Hoekman, A. Broch, C. Robbins, Hydrothermal carbonization (HTC) of lignocellulosic biomass, Energy Fuels 25 (2011) 1802–1810. https://doi.org/10.1021/ef101745n
[92] S. Nizamuddina, H.A. Baloch, G.J. Griffin, N.M. Mubarak, A.W. Bhutto, R. Abrod, S.A. Mazari, B.S. Alie, An overview of effect of process parameters on hydrothermal carbonization of biomass, Renew. Sustain. Energy. Rev. 73 (2017) 1289–1299. https://doi.org/10.1016/j.rser.2016.12.122
[93] Wang T, Zhai Y, Zhu Y, Li C, Zeng G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties, Renew. Sustain. Energy Rev. 90 (2018) 223–247. https://doi.org/10.1016/j.rser.2018.03.071
[94] L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes, Adv Energy Mater.1 (2011) 356–361. https://doi.org/10.1002/aenm.201100019
[95] C. Falco, J.M. Sieben, N. Brun, M. Sevilla, T. Mauelen, E. Morallón, D. Cazorla‐Amorós, M.‐M. Titirici, Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors, ChemSusChem 6 (2013) 374–382. https://doi.org/10.1002/cssc.201200817
[96] H. Wang, Z. Li, J.K. Tak, C.M.B. Holt, X. Tan, Z. Xu, B.S. Amirkhiz, D. Harfield, A. Anyia, T. Stephenson, D. Mitlin, Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste, Carbon 57 (2013) 317–328. https://doi.org/10.1016/j.carbon.2013.01.079
[97] L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M.‐M. Titirici, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors, Adv. Mater. 22 (2010) 5202–5206. https://doi.org/10.1002/adma.201002647
[98] C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors, Nano Energy 12 (2015) 141–151. https://doi.org/10.1016/j.nanoen.2014.12.014
[99] W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo based industrial by-product as a high performance supercapacitor electrode material, J. Mater. Chem. A 3 (2015) 5656–5664. https://doi.org/10.1039/C4TA06620K
[100] Sevilla M, Gu W, Falco C, M.M. Titirici, A.B. Fuertes, G. Yushin, Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. J Power Sources 267 (2014) 26–32. https://doi.org/10.1016/j.jpowsour.2014.05.046
[101] X.L. Wu, T. Wen, H.L. Guo, S. Yang, X. Wang, A.-W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors, ACS Nano 7 (2013) 3589–3597. https://doi.org/10.1021/nn400566d
[102] H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Stephenson, C.K. Kingondu, C.M. B. Holt, B.C. Olsen, J.K. Tak, D. Harfield, A.O. Anyia, D. Mitlin, Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy, ACS Nano 7 (2013) 5131–5141. https://doi.org/10.1021/nn400731g
[103] Y. Gong, L. Xie, H. Li, Y. Wang, Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant, Chem. Commun. 50 (2014) 2633–12636. https://doi.org/10.1039/C4CC04998E
[104] Y. Wu, J.P. Cao, X.Y. Zhao, Z.Q. Hao, Q.Q. Zhuang, J.S. Zhu, X.Y. Wang, X.Y. Wei, Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor, Electrochim. Acta 252 (2017) 397–407. https://doi.org/10.1016/j.electacta.2017.08.176
[105] Z.G. Liu, F.S. Zhang, J.Z. Wu, Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment, Fuel 89 (2010) 510–514. https://doi.org/10.1016/j.fuel.2009.08.042
[106] B.R. Selvi, D. Jagadeesan, B.S. Suma, G. Nagashankar, M. Arif, K. Balasubramanyam, M. Eswaramoorthy, T.K. Kundu, Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: Delivery of membrane impermeable molecule to modulate gene expression in vivo, Nano Lett. 8 (2008) 3182–3188. https://doi.org/10.1021/nl801503m
[107] S. Liu, Y. Liang, W. Zhou, W. Hu, H. Dong, M. Zheng, H. Hu, B. Lei, Y. Xiao, Y. Liu, Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high performance supercapacitors, J. Mater. Chem. A 6 (2018) 12046–12055. https://doi.org/10.1039/C8TA02838A
[108] K.H. Adolfsson, C.F. Lin, M. Hakkarainen, Microwave assisted hydrothermal carbonization and solid state post-modification of carbonized polypropylene, ACS Sustainable Chem. Eng. 6 (2018) 11105−11114. https://doi.org/10.1021/acssuschemeng.8b02580
[109] Z. Hu, S. Jin, W. Lu, S. Tang, C. Guo, Y. Lu, R. Zhang, Y. Liu, M. Jin, Effect of carbonization temperature on microwave absorbing properties of polyacrylonitrile-based carbon fibers, Fuller. Nanotube. Carbon 25 (2017) 637−641. https://doi.org/10.1080/1536383X.2017.1372751
[110] Y. Cheng, B. Li, Y. Huang, Y. Wang, J. Chen, D. Wei, Y. Feng, D. Jia, Y. Zhou, Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors, Appl. Surf. Sci. 439 (2018) 712–723. https://doi.org/10.1016/j.apsusc.2018.01.006
[111] J.S. Lee, R.T. Mayes, H. Luo, S. Dai, Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions, Carbon 48 (2010) 3364–3368. https://doi.org/10.1016/j.carbon.2010.05.027
[112] E. Raymundo-Pinero, M. Cadek, F. Beguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds, Adv. Funct. Mater. 19 (2009) 1032–1039. https://doi.org/10.1002/adfm.200801057
[113] Y.D. Chen, M.J. Huang, B. Huang, X.R. Chen, Mesoporous activated carbon from inherently potassium rich pokeweed by in situ self-activation and its use for phenol removal, J. Anal. Appl. Pyrolysis 98 (2012) 159–165. https://doi.org/10.1016/j.jaap.2012.09.011
[114] M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors, Energy Environ. Sci. 6 (2013) 1249–1259. https://doi.org/10.1039/c3ee22325f
[115] D. Xin-hui, C. Srinivasakannan, P. Jin-hui, Z. Li-bo, Z. Zheng-yong, Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating, Biomass Bioenergy 35 (2011) 3920–3926. https://doi.org/10.1016/j.biombioe.2011.06.010
[116] Y.M. Chen, S. Ji, H. Wang, V. Linkov, R.F. Wang, Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction, Int. J. Hydrogen Energy 43 (2018) 5124–5132. https://doi.org/10.1016/j.ijhydene.2018.01.095
[117] F. Yang, L.L. Sun, W.L. Xie, Q. Jiang, Y. Gao, W. Zhang, Y. Zhang, Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: An efficient adsorbent for atrazine removal, Sci. Total Environ., 607 (2017) 1391–1399. https://doi.org/10.1016/j.scitotenv.2017.07.020
[118] H.S. Shang, Y.J. Lu, F. Zhao, C. Chao, B. Zhang, H.S. Zhang, Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium, RSC Adv. 5 (2015) 75728–75734. https://doi.org/10.1039/C5RA12406A
[119] C.J. Wang, D.P. Wu, H.J. Wang, Z.Y. Gao, F. Xu, K. Jiang, A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity, J. Mater. Chem. A 6 (2018) 1244–1254. https://doi.org/10.1039/C7TA07579K
[120] Z. Wang, D. Shen, C. Wu, S. Gu, State-of-the-art on the production and application of carbon nanomaterials from biomass, Green Chem. 20 (2018) 5031–5057. https://doi.org/10.1039/C8GC01748D
[121] Y. Liu, B. Huang, X. Lin, Z. Xie, Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach, J. Mater. Chem. A 5 (2017) 13009–13018. https://doi.org/10.1039/C7TA03639F
[122] C. Xia, S.Q. Shi, Self-activation for activated carbon from biomass: theory and parameters. Green Chem. 18 (2016) 2063–2071. https://doi.org/10.1039/C5GC02152A
[123] K. Sun, C.Y. Leng, J.C. Jiang, Q. Bu, G.F. Lin, X.C. Lu, G.Z. Zhu, Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance, New Carbon Mater. 32 (2017) 451–459. https://doi.org/10.1016/S1872-5805(17)60134-3
[124] S.Q. Shi, C. Xia, Porositization process of carbon or carbonaceous materials. US Patent App. (2014) 14/211, 357.
[125] C. Xia, C. Kang, M.D. Patel, L. Cai, B. Gwalani, R. Banerjee, S.Q. Shi, W. Choi, Pine wood extracted activated carbon through self-activation process for high-performance lithium-ion battery, Chemistry Select 1 (2016) 4000–4007. https://doi.org/10.1002/slct.201600926
[126] C. Bommier, R. Xu, W. Wang, X. Wang, D. Wen, J. Lu, X. Ji, Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors, Nano Energy 13 (2015) 709–717. https://doi.org/10.1016/j.nanoen.2015.03.022
[127] S. Herou, P. Schlee, A.B. Jorge, M. Titirici, Biomass-derived electrodes for flexible supercapacitors. Curr Opin Green Sustain. Chem. 9 (2018) 18–24. https://doi.org/10.1016/j.cogsc.2017.10.005
[128] S. Dutta, A. Bhaumik, K.C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications, Energy Environ. Sci. 7 (2014) 3574–3592. https://doi.org/10.1039/C4EE01075B
[129] Y. Liu, J. Chen, B. Cui, P. Yin, C. Zhang, Design and preparation of biomass-derived carbon materials for supercapacitors: A review, C 4 (2018) 53. https://doi.org/10.3390/c4040053
[130] L. Jiang, L. Sheng, Z. Fan, Biomass-derived carbon materials with structural diversities and their applications in energy storage, Sci. Chin. Mater. 61 (2018) 133–158. https://doi.org/10.1007/s40843-017-9169-4
[131] R.J. Mo, Y. Zhao, M. Wu, H.M. Xiao, S. Kuga, Y. Huang, J.P. Li, S.Y. Fu, Activated carbon from nitrogen rich watermelon rind for high-performance supercapacitors, RSC Adv. 6 (2016) 59333–59342. https://doi.org/10.1039/C6RA10719B
[132] Y.Y. Wang , B.H. Hou , H.Y. Lü, C.L. Lü, X.L. Wu , Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors, Chemistry Select 1 (2016) 1441–1447. https://doi.org/10.1002/slct.201600133
[133] K. Chaitra, R.T. Vinny, P. Sivaraman, N. Reddy, C. Hu, K. Venkatesh, C.S. Vivek, N. Nagaraju, N. Kathyayini, KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor, J. Energy Chem. 26 (2017) 56–62. https://doi.org/10.1016/j.jechem.2016.07.003
[134] T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochem. Commun. 10 (2008) 1594–1597. https://doi.org/10.1016/j.elecom.2008.08.022
[135] Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu, D.S. Wright, A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources 209 (2012) 152–157. https://doi.org/10.1016/j.jpowsour.2012.02.089
[136] J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes, Electrochim. Acta 157 (2015) 290–298. https://doi.org/10.1016/j.electacta.2014.12.169
[137] Y. Fan, X. Yang, B. Zhu, P.F. Liu, H.T. Lu, Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors, J. Power Sources 268 (2014) 584–590. https://doi.org/10.1016/j.jpowsour.2014.06.100
[138] L. Zhang, T. You, T. Zhou, X. Zhou, F. Xu, Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 13918–13925. https://doi.org/10.1021/acsami.6b02774
[139] M. Karnan, K. Subramani, P.K. Srividhya, M. Sathish, Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes, Electrochim. Acta 228 (2017) 586–596. https://doi.org/10.1016/j.electacta.2017.01.095
[140] L. Peng, Y. Liang, H. Dong, H. Hu, X. Zhao, Y. Cai, Y. Xiao, Y. Liu, M. Zheng, Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors, J. Power Sources 377 (2018) 151–160. https://doi.org/10.1016/j.jpowsour.2017.12.012