Nonlinear Optical Characterization of CsPbBr3 Nanocrystals as a Novel Material for the Integration into Electro-Optic Modulators

Nonlinear Optical Characterization of CsPbBr3 Nanocrystals as a Novel Material for the Integration into Electro-Optic Modulators

Francesco Vitale, Fabio De Matteis, Mauro Casalboni, Paolo Prosposito, Patrick Steglich, Viachaslau Ksianzou, Christian Breiler, Sigurd Schrader, Barbara Paci, Amanda Generosi

Abstract. The present work is concerned with the investigation of the nonlinear optical response of green emissive CsPbBr3 nanocrystals, in the form of colloidal dispersions in toluene, synthesized via a room-temperature ligand-assisted supersaturation recrystallization (LASR) method. After carrying out a preliminary characterization via X-Ray Diffraction (XRD) and Absorption and Photoluminescence (PL) Spectroscopies, the optical nonlinearity of the as-obtained colloids is probed by means of a single-beam Z-scan setup. Results show that the material in question, within the sensitivity of the experimental apparatus, exhibits a nonlinear refractive index n2 that is the order of 10-15 cm2/W. Moreover, a three-photon absorption mechanism (3PA) is postulated, according to the fitting of the recorded Z-scan traces and the fundamental absorption threshold, which turns out to be off resonance with twice the energy of the laser radiation. A figure of merit is, then, calculated as an indicator of the quality of the CsPbBr3 nanocrystals as a candidate material for photonic devices, for instance, Kerr-like electro-optic modulators (EOMs).

CsPbBr3 Nanocrystals, NLO Materials, Z-Scan, Kerr Effect, EOMs

Published online 2/25/2020, 11 pages

Citation: Francesco Vitale, Fabio De Matteis, Mauro Casalboni, Paolo Prosposito, Patrick Steglich, Viachaslau Ksianzou, Christian Breiler, Sigurd Schrader, Barbara Paci, Amanda Generosi, Nonlinear Optical Characterization of CsPbBr3 Nanocrystals as a Novel Material for the Integration into Electro-Optic Modulators, Materials Research Proceedings, Vol. 16, pp 27-37, 2020


Part of the book on Photonics and Photoactive Materials

[1] G. Alimonti, G. Ammendola, A. Andreazza, D. Badoni, V. Bonaiuto, M. Casalboni, F. De Matteis, A. Mai, G. Paoluzzi, P. Prosposito, A. Salamon, G. Salina, E. Santovetti, F. Sargeni, F. Satta, S. Schrader and P. Steglich, “Use of Silicon Photonics Wavelength Multiplexing Techniques for Fast Parallel Readout in High Energy Physics,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 936, no. 21, pp. 601-603, 2019.
[2] V. Almeida, Q. Xu, C. Barrios and M. Lipson, “Guiding and Confining Light in Void Nanostructure,” Optics Letters, vol. 29, no. 11, pp. 1209-1211, 2004.
[3] P. Steglich, C. Mai, D. Stolarek, S. Lischke, S. Kupijai, C. Villringer, S. Pulwer, F. Heinrich, J. Bauer, S. Meister, D. Knoll and M. Casalboni, “Novel Ring Resonator Combining Strong Field Confinement With High Optical Quality Factor,” IEEE Photonics technology Letters, vol. 27, no. 20, pp. 2197-2200, 2015.
[4] P. Steglich, “Silicon-On-Insulator Slot Waveguides: Theory and Applications in Electro-Optics and Optical Sensing,” in Emerging Waveguide Technology, IntechOpen, 2018, pp. 187-210.
[5] P. Steglich, C. Mai, C. Villringer, S. Pulwer, M. Casalboni, S. Schrader and A. Mai, “Quadratic Electro-Optic Effect in Silicon-Organic Hybrid Slot-Waveguides,” Optics Letters, vol. 43, no. 15, pp. 3598-3601, 2018.
[6] J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, M. Jazbinsek, J. Pfeifle, M. Lauermann, R. Dinu, M. Waldow, T. Wahlbrink, J. Bolten, M. Fournier, H. Yu, S. Wehrli, J. Fedeli, P. Gunter and W. Bogaerts, “Silicon-Organic Hybrid Electro-Optical Devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 6, pp. 114-120, 2013.
[7] H. Snaith, “Perovskites: the Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells,” Journal of Physical Chemistry Letters, vol. 4, no. 21, pp. 3623-3630, 2013.
[8] M. Green, A. Ho-Baillie and H. Snaith, “The Emergence of Perovskite Solar Cells,” Nature Photonics, vol. 8, no. 7, p. 506, 2014.
[9] F. Deschler , M. Price, S. Pathak, L. Klintberg, D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. Stranks, H. Snaith and M. Atatüre, “High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide,” Journal of Physical Chemistry Letters, pp. 1421-1426, 2014.
[10] S. Stranks and H. Snaith, “Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices,” Nature Nanotechnology, vol. 10, no. 5, p. 391, 2015.
[11] W. Mao, J. Zheng, C. Zhang, A. Chesman, Q. Ou, J. Hicks, F. Li, Z. Wang, B. Graystone, T. Bell and M. Rothmann, “Controlled Growth of Monocrystalline Organo-Lead Halide Perovskite and its Application in Photonic Devices,” Angewandte Chemie, vol. 56, no. 41, pp. 12486-12491, 2017.
[12] A. Chanana, X. Liu, C. Zhang, Z. Vardeny and A. Nahata, “Ultrafast Frequency-Agile Terahertz Devices using Methylammonium Lead Halide Perovskites,” Sci. Adv. 4(5), 7353 (2018).,” Science Advances, vol. 4, no. 5, p. 7353, 2018.
[13] Q. Akkerman, G. Rainò, M. Kovalenko and L. Manna, “Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals,” Nature Materials, vol. 17, no. 5, p. 394, 2018.
[14] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, “CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes,” Advanced Functional Materials, vol. 26, no. 15, pp. 2435-2445, 2016.
[15] S. Seth and A. Samanta, “A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition,” Scientific Reports, vol. 6, p. 37693, 2016.
[16] L. Yang, D. Li, C. Wang, W. Yao, H. Wang and K. Huang, “Room-Temperature Synthesis of Pure Perovskite-Related Cs4PbBr6 Nanocrystals and their Ligand-Mediated Evolution into Highly Luminescent CsPbBr3 Nanosheets,” Journal of Nanoparticle Research, vol. 19, no. 7, p. 258, 2017.
[17] F. De Matteis, F. Vitale, S. Privitera, E. Ciotta, R. Pizzoferrato, A. Generosi, B. Paci, L. Di Mario, J. Pelli Cresi, F. Martelli and P. Prosposito, “Optical Characterization of Cesium Lead Bromide Perovskites,” Crystals, vol. 9, p. 280, 2019.
[18] M. Sheik-Bahae, A. Said and E. Van Stryland, “High-Sensitivity, Single-Beam n2 Measurements,” Optics Letters, vol. 14, no. 17, pp. 955-957, 1989.
[19] M. Sheik-Bahae, A. Said, H. Wei, D. Hagan and E. Van Stryland, “Sensitive Measurement of Optical Nonlinearities using a Single Beam,” IEEE Journal of Quantum Electronics, vol. 26, no. 4, pp. 760-769, 1990.
[20] E. Van Stryland and M. Sheik-Bahae, ” Z-Scan Measurements of Optical Nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Materials, Marcel Dekker Inc., 1998, pp. 671-708.
[21] S. Liu, C. Guixiang, H. Yunyu, S. Lin, Y. Zhang, M. He, W. Xiang and X. Liang, “Tunable Fluorescence and Optical Nonlinearities of All Inorganic Colloidal Cesium Lead Halide Perovskite Nanocrystals,” Journal of Alloys and Compounds, vol. 724, pp. 889-896, 2017.
[22] J. He, Y. Qu, H. Li, J. Mi and W. Ji, “Three-Photon Absorption in ZnO and ZnS Crystals,” Optics Express, vol. 13, no. 23, pp. 9235-9247, 2005.
[23] B. Wherrett, “Scaling Rules for Multiphoton Interband Absorption in Semiconductors,” Journal of the Optical Society of America B, vol. 1, no. 1, pp. 67-72, 1984.
[24] H. Brandi and C. De Araujos, “Multiphoton Absorption Coefficients in Solids: a Universal Curve,” Journal of Physics C: Solid State Physics, vol. 16, no. 30, p. 5929, 1983.
[25] A. Manzi, Y. Tong, J. Feucht, E. Yao, L. Polavarapu, A. Urban and J. Feldmann, “Resonantly Enhanced Multiple Exciton Generation through Below-Band-Gap Multi-Photon Absorption in Perovskite Nanocrystals,” Nature Communications, vol. 9, no. 1, p. 1518, 2018.