Green Solvents for CO2 Capture


Green Solvents for CO2 Capture

M. Yildiz

Carbon dioxide emissions from thermal power plants, oil refineries, petrochemical plants, hydrogen and cement factories have become one of the most important global problems due to their impact on climate change. The most efficient and at the same time feasible approach to overcome this important problem which causes climate change is the gas attitude methods that will enable the capture of CO2 economically with low energy. This chapter is prepared in order to demonstrate the importance of green solvents as an alternative for CO2 capture procedure in different production plants consists of three parts.

Green Chemistry, Green Engineering, CO2 Capture, Ionic Liquids

Published online 8/20/2019, 9 pages

Citation: M. Yildiz, Green Solvents for CO2 Capture, Materials Research Foundations, Vol. 54, pp 51-59, 2019


Part of the book on Industrial Applications of Green Solvents

[1] E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies, The Journal of Supercritical Fluids, 132 (2018) 3-16.
[2] P. Bains, P. Psarras, J. Wilcox, CO2 capture from the industry sector, Progr. Energ. Combust. Sci. 63 (2017) 146-172.
[3] M. Ramdin, T.W. Loos, T. Vlugt, State-of-the-art of CO2 capture with ionic liquids, Ind. Eng. Chem. Res. 51 (2012) 8149−8177.
[4] N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, A.S. Adjiman, C.K. Williams, C. Shah, P. Fennell, An overview of CO2 capture technologies, Energy Environ. Sci. 3 (2010) 1645-1669.
[5] G. Li, P. Xiao, P.A. Webley, J. Zhang, R. Singh, Competition of CO2/H2O in Adsorption based CO2 capture, Energy Procedia. 1 (2009) 1123–1130.
[6] L. Cuccia, J. Dugay, D. Bontemps, M. Louis-Louisy, J. Vial, Analytical methods for the monitoring of post-combustion CO2 capture process using amine solvents: A review, International Journal of Greenhouse Gas Control, 72 (2018) 138–151.
[7] Y. Peng, B. Zhao, L. Li, Advance in post-combustion CO2 capture with Alkaline solution: A brief review, Energy Procedia. 14 (2012) 1515 – 1522.
[8] Z. Xu, S. Wang, L. Liu, C. Chen, Solvents with low critical solution temperature for CO2 capture, Energy Procedia. 23(2012) 64-71.
[9] J.J. Vericella, S.E. Baker, J.K. Stolaroff, E.B. Duoss, J.O. Hardin, J. Lewicki, E. Glogowski, W.C. Floyd, C.A. Valde, W.L. Smith, J.H. Satcher, W.L. Bourcier, C.M. Spadaccini, J.A. Lewis, R.D. Aines, Encapsulated liquid sorbents for carbon dioxide capture, Nat. Comm. 6 (2015) 6124.
[10] M. Songolzadeh, M.Soleimani, M. Takht Ravanchi, R. Songolzadeh, Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions, The Scientific World Journal, 2014 (2014) 1-34.
[11] M. Hasib-ur-Rahman, M. Siaj, F. Larachia, Ionic liquids for CO2capture-Development and progress, Chem. Eng. Process. 49 (2010) 313–322.
[12] Z. Zhijun, D. Haifeng, Z. Xiangping, The research progress of CO2 capture with ionic liquids, Chin. J. Chem. Eng. 20 (2012) 120-129.
[13] L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature, 399 (1999) 28-29.
[14] L.A. Blanchard, Z.Y. Gu, J.F. Brennecke, High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B. 105 (2010) 2437-2444.
[15] R.E. Baltus, B.H. Culbertson, S. Dai, H.M. Luo, D.W. DePaoli, Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance, J. Phys.Chem. B. 108 (2004) 721-727.
[16] A.M. Schilderman, S. Raeissi, C.J. Peters, Solubility of carbon dioxide in the ionic liquid 1 ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, Fluid Phase Equil. 260 (2007) 19-22.
[17] X.L. Yuan, S.J. Zhang, Y.H. Chen, X.M. Lu, W.B. Dai, R. Mori, Solubilities of gases in 1,1,3,3-tetramethylguanidine lactate at elevated pressures, J. Chem. Eng. Data. 51 (2) (2006) 645-647.
[18] J.L. Anderson, J.K. Dixon, J.F. Brennecke, Solubility of CO2, CH4, C2H6, C2H4, O2 and N2 in hexyl-3-methylpyridiniumbis(trifluoromethylsulfonyl) imide comparison to other ionic liquids, Acc. Chem. Res. 40 (11)(2007) 1208-1216.
[19] X.C. Zhang, Z.P. Liu, W.C. Wang, Screening of ionic liquids to capture CO2 by COSMO-RS and experiments, AIChE J. 54 (10) (2008)2717-2728.
[20] C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids, J. Am. Chem. Soc. 126 (2004) 5300-5308.
[21] S. Aki, B.R. Mellein, E.M. Saurer, J.F. Brennecke, High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids, J. Phys. Chem. B. 108 (2004) 20355-20365.
[22] S.J. Zhang, X.L.Yuan, Y.H. Chen, X.P. Zhang, Solubilities of CO2 in 1-btyl-3 methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidine lactate at elevated pressures, J. Chem. Eng. Data. 50 (2005) 1582-1585.
[23] M.J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, Improving carbon dioxide solubility in ionic liquids, J. Phys. Chem. B. 111 (2007) 9001-9009.
[24] J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke, Anion effects on gas solubility in ionic liquids, J. Phys. Chem. B. 109 (2005) 6366−6374.
[25] S. Zeng, X. Zhang, L.Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-liquid-based CO2 capture systems: Structure, interaction and process, Chem. Rev. 117 (2017) 9625-9673.
[26] G. Cui, J. Wang, S. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev. 45 (2016) 4307-4339.