Ionic Liquids as a Green Solvent for Lipase-Catalyzed Reactions


Ionic Liquids as a Green Solvent for Lipase-Catalyzed Reactions

A.A. Elgharbawy, M. Muniruzzaman, H.M. Salleh, M.D.Z. Alam

Enzymes are important contributors to the current industrial development as they activate the reactions through enormous pathways. In recent years, ionic liquids (ILs) have become qualified media for clean extraction, photochemistry, green processing, electro-synthesis, and pharmaceutical applications. Although many enzymes have been studies in ILs media, lipases showed exceptional stability, selectivity and production yields. This chapter briefly outlines some merit as well as the downsides of current ILs applications in lipases reactions including the production of biodiesel, esterification and other established applications.

Ionic Liquids, Lipase, Biocatalysts, Biodiesel, Transesterification

Published online 5/25/2019, 40 pages

Citation: A.A. Elgharbawy, M. Muniruzzaman, H.M. Salleh, M.D.Z. Alam, Ionic Liquids as a Green Solvent for Lipase-Catalyzed Reactions, Materials Research Foundations, Vol. 50, pp 21-60, 2019


Part of the book on Industrial Applications of Green Solvents

[1] M. Moniruzzaman, K. Nakashima, N. Kamiya, M. Goto, Recent advances of enzymatic reactions in ionic liquids, Biochem. Eng. J. 48 (2010) 295–314.
[2] A.A. Elgharbawy, M.Z. Alam, M. Moniruzzaman, M. Goto, Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass, Biochem. Eng. J. 109 (2016) 252–267.
[3] M. Moniruzzaman, T. Ono, Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment, Bioresour. Technol. 127 (2013) 132–137.
[4] J. Gräsvik, D.G. Raut, J.-P.P. Mikkola, Challenges and perspectives of ionic liquids vs traditional solvents for cellulose processing, in: M. Jihoon, S. Haeum (Eds.), Handbook of ionic liquids. Properties, applications and hazards, Nova Science Publishers, Inc, New York, 2012, pp. 1-34.
[5] M. Sivapragasam, M. Moniruzzaman, M. Goto, Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications, Biotechnol. J. 11 (2016) 1000–1013.
[6] J. Kulhavy, R. Andrade, S. Barros, J. Serra, M. Iglesias, Influence of temperature on thermodynamics of protic ionic liquid 2-hydroxy diethylammonium lactate (2-HDEAL) + short hydroxylic solvents, J. Mol. Liq. 213 (2016) 92–106.
[7] M. Cvjetko, J. Vorkapić-Furač, P. Žnidaršič-Plazl, Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor, Process Biochem. 47 (2012) 1344–1350.
[8] H. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen. 373 (2010) 1–56.
[9] B. Dabirmanesh, K. Khajeh, J. Akbari, H. Falahati, S. Daneshjoo, A. Heydari, Mesophilic alcohol dehydrogenase behavior in imidazolium based ionic liquids, J. Mol. Liq. 161 (2011) 139–143.
[10] M. da Graça Nascimento, J.M.R. da Silva, J.C. da Silva, M.M. Alves, The use of organic solvents/ionic liquids mixtures in reactions catalyzed by lipase from Burkholderia cepacia immobilized in different supports, J. Mol. Catal. B Enzym. 112 (2015) 1–8.
[11] B. Zou, C. Song, X. Xu, J. Xia, S. Huo, F. Cui, Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials, Appl. Surf. Sci. 311 (2014) 62–67.
[12] R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: why, what and how, Chem. Soc. Rev. 42 (2013) 6223–6235.
[13] L.B. Ramos Sanchez, Fungal lipase production by solid-state fermentation, J. Bioprocess. Biotech. 5 (2015) 1-9.
[14] C. Aouf, E. Durand, J. Lecomte, M.-C. Figueroa-Espinoza, E. Dubreucq, H. Fulcrand, P. Villeneuve, The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds, Green Chem. 16 (2014) 17406–1754.
[15] F. Hasan, A.A. Shah, A. Hameed, Industrial applications of microbial lipases, Enzyme Microb. Technol. 39 (2006) 235–251.
[16] R. Sharma, Y. Chisti, U.C. Banerjee, Production, purification, characterization, and applications of lipases, Biotechnol. Adv. 19 (2001) 627–662.
[17] T. De Diego, A. Manjon, P. Lozano, M. Vaultier, J.L. Iborra, An efficient activity ionic liquid-enzyme system for biodiesel production, Green Chem. 13 (2011) 444–451.
[18] B. Dabirmanesh, K. Khajeh, B. Ranjbar, F. Ghazi, A. Heydari, Inhibition mediated stabilization effect of imidazolium based ionic liquids on alcohol dehydrogenase, J. Mol. Liq. 170 (2012) 66–71.
[19] Earle Martyn J, S.K. R, Ionic liquids. Green solvents for the future, Pure Appl. Chem. 72 (2000) 1391-1398.
[20] C.Z. Liu, F. Wang, A.R. Stiles, C. Guo, Ionic liquids for biofuel production: Opportunities and challenges, Appl. Energy. 92 (2012) 406–414.
[21] K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine, Chem. Rev. 117 (2017)7132-7189.
[22] Y. Shi, Y. Wu, X. Lu, Y. Ren, Q. Wang, C. Zhu, D. Yu, H. Wang, Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria, Food Chem. 220 (2017) 249–256.
[23] Y. Fan, X. Wang, J. Li, L. Zhang, L. Yang, P. Gao, Z. Zhou, Kinetic study of the inhibition of ionic liquids on the trypsin activity, J. Mol. Liq. 252 (2018) 392–398.
[24] W.Y. Lou, L. Chen, B.-B. Zhang, T.J. Smith, M.-H. Zong, Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells, BMC Biotechnol. 9 (2009) 90-102.
[25] C. E. Paul, V. G. Fernández, Biocatalysis and biotransformation, in: X. Xu, Z. Guo, L.-Z. Cheong (Eds.), Ionic liquids in lipid processing and analysis opportunities and challenges, AOCS Press, London, 2017, pp. 11-58.
[26] A.A. Elgharbawy, F.A. Riyadi, M.Z. Alam, M. Moniruzzaman, Ionic liquids as a potential solvent for lipase-catalysed reactions: A review, J. Mol. Liq. 251 (2018) 150-166.
[27] M. Moniruzzaman, M. Goto, Ionic liquids: future solvents and reagents for pharmaceuticals, J. Chem. Eng. Japan. 44 (2011) 370–381.
[28] Z. Findrik, G. Megyeri, L. Gubicza, K. Bélafi-Bakó, N. Nemestóthy, M. Sudar, Lipase catalyzed synthesis of glucose palmitate in ionic liquid, J. Clean. Prod. 112 (2016) 1106–1111.
[29] M. Naushad, Z.A. ALOthman, A.B. Khan, M. Ali, Effect of ionic liquid on activity, stability, and structure of enzymes: A review, Int. J. Biol. Macromol. 51 (2012) 555–560.
[30] H. Zhao, Protein stabilization and enzyme activation in ionic liquids: specific ion effects, J. Chem. Technol. Biotechnol. 91 (2016) 25–50.
[31] S.P. Ã, R.J.K. Ãyz, S. Park, R.J. Kazlauskas, Biocatalysis in ionic liquids–advantages beyond green technology, Curr. Opin. Biotechnol. 14 (2003) 432–437.
[32] H. Zhao, Methods for stabilizing and activating enzymes in ionic liquids-a review, J. Chem. Technol. Biotechnol. 85 (2010) 891–907.
[33] S. Sunitha, S. Kanjilal, P.S. Reddy, R.B.N. Prasad, Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil, Biotechnol. Lett. 29 (2007) 1881–1885.
[34] M. Guncheva, D. Yancheva, P. Ossowicz, E. Janus, Structural basis for the inactivation of Candida rugosa lipase in the presence of amino acid ionic liquids, Bulg. Chem. Commun. 49 (2017) 132–136.
[35] O. Ulbert, K. Belafi-Bako, K. Tonova, L. Gubicza, Thermal stability enhancement of Candida rugosa lipase using ionic liquids, Biocatal. Biotransformation, 23 (2005) 177-183.
[36] H. Zhao, Z. Song, O. Olubajo, J. V Cowins, New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel, Appl. Biochem. Biotechnol. 162 (2010) 13–23.
[37] S.H. Schöfer, N. Kaftzik, P. Wasserscheid, U. Kragl, Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity, Chem. Commun.0 (2001) 425–426.
[38] Y. Fan, X. Dong, X. Li, Y. Zhong, J. Kong, S. Hua, J. Miao, Y. Li, Spectroscopic studies on the inhibitory effects of ionic liquids on lipase activity, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 159 (2016) 128–133.
[39] M.B.A. Rahman, K. Jumbri, N.A.M.A. Hanafiah, E. Abdulmalek, B.A. Tejo, M. Basri, A.B. Salleh, Enzymatic esterification of fatty acid esters by tetraethylammonium amino acid ionic liquids-coated Candida rugosa lipase, J. Mol. Catal. B Enzym. 79 (2012) 61–65.
[40] Y. Fan, X. Wang, L. Zhang, J. Li, L. Yang, P. Gao, Z. Zhou, Lipase-catalyzed synthesis of biodiesel in a hydroxyl-functionalized ionic liquid, Chem. Eng. Res. Des. 2 (2018) 199–207.
[41] M.C. Lisboa, C.A. Rodrigues, A.S. Barbosa, S. Mattedi, L.S. Freitas, A.A. Mendes, C. Dariva, E. Franceschi, Á.S. Lima, C.M.F. Soares, New perspectives on the modification of silica aerogel particles with ionic liquid applied in lipase immobilization with platform in ethyl esters production, Process Biochem. (2018) 157-165.
[42] S. Park, T.T.N. Doan, Y.M. Koo, K.K. Oh, S.H. Lee, Ionic liquids as cosolvents for the lipase-catalyzed kinetic resolution of ketoprofen, Mol. Catal. 459 (2018) 113–118.
[43] H. Suo, L. Xu, C. Xu, H. Chen, D. Yu, Z. Gao, H. Huang, Y. Hu, L. Xu, C. Xu, H. Chen, D. Yu, Z. Gao, H. Huang, Y. Hu, Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-Chitosan nanocomposites, Int. J. Biol. Macromol. 119 (2018) 624–632.
[44] M. Moniruzzaman, K. Ino, N. Kamiya, M. Goto, Lipase incorporated ionic liquid polymers as active, stable and reusable biocatalysts, Org. Biomol. Chem. 10 (2012) 7707–7713.
[45] R.L. de Souza, E.L.P. de Faria, R.T. Figueiredo, L. dos Santos Freitas, M. Iglesias, S. Mattedi, G.M. Zanin, O.A.A. dos Santos, J.A.P. Coutinho, Á.S. Lima, Protic ionic liquid as additive on lipase immobilization using silica sol-gel, Enzyme Microb. Technol. 52 (2013) 141–150.
[46] J.K. Lee, M.J. Kim, Ionic liquid co-lyophilized enzyme for biocatalysis in organic solvent: Remarkably enhanced activity and enantioselectivity, J. Mol. Catal. B Enzym. 68 (2011) 275–278.
[47] D.H. Zhang, H.X. Xu, N. Chen, W.C. Che, The application of ionic liquids in enzyme immobilization and enzyme modification, Austin J. Biotechnol. Bioeng. 3 (2016) 1060–1064.
[48] C. Miao, L. Yang, Z. Wang, W. Luo, H. Li, Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production, Fuel, 224 (2018) 774–782.
[49] M. Guncheva, K. Paunova, D. Yancheva, I. Svinyarov, M. Bogdanov, Effect of two series ionic liquids based on non-nutritive sweeteners on catalytic activity and stability of the industrially important lipases from Candida rugosa and Rhizopus delemar, J. Mol. Catal. B Enzym. 117 (2015) 62–68.
[50] M. Solhtalab, H.R. Karbalaei-Heidari, G. Absalan, Tuning of hydrophilic ionic liquids concentration: A way to prevent enzyme instability, J. Mol. Catal. B Enzym. 122 (2015) 125–130.
[51] T. Wang, L. Wang, Y. Jin, P. Chen, W. Xu, L. Yu, I. V. Voroshylova, S.R. Smaga, E. V. Lukinova, V. V. Chaban, O.N. Kalugin, E.G. Lemraski, Z. Pouyanfar, W.W. Gao, F.-X. Zhang, G.-X. Zhang, C.H. Zhou, Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis, Biochem. Eng. J. 99 (2015) 67–84.
[52] S.H. Ha, S.H. Lee, D.T. Dang, M.S. Kwon, W.-J. Chang, Y.J. Yu, I.S. Byun, Y.-M. Koo, Enhanced stability of Candida antarctica lipase B in ionic liquids, Korean J. Chem. Eng. 25 (2008) 291–294.
[53] S.H. Lee, T.T.N. Doan, S.H. Ha, W.-J. Chang, Y.-M. Koo, Influence of ionic liquids as additives on sol-gel immobilized lipase, J. Mol. Catal. B Enzym. 47 (2007) 129–134.
[54] B. Wang, C. Zhang, Q. He, H. Qin, G. Liang, W. Liu, Efficient resolution of (R,S)-1-(1-naphthyl)ethylamine by Candida antarctica lipase B in ionic liquids, Mol. Catal. 448 (2018) 116–121.
[55] C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry, Wiley-VCH, Weinheim, 2011.
[56] V. Strehmel, R. Lungwitz, H. Rexhausen, S. Spange, Relationship between hyperfine coupling constants of spin probes and empirical polarity parameters of some ionic liquids, New J. Chem. 34 (2010) 2125–2131.
[57] H. Zhao, G.A. Baker, Z. Song, O. Olubajo, L. Zanders, S.M. Campbell, Effect of ionic liquid properties on lipase stabilization under microwave irradiation, J. Mol. Catal. B Enzym. 57 (2009) 149-157.
[58] S. Park, R.J. Kazlauskas, Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations, J. Org. Chem. 66 (2001) 8395–8401.
[59] J.-M. Lee, J.M. Prausnitz, Polarity and hydrogen-bond-donor strength for some ionic liquids: effect of alkyl chain length on the pyrrolidinium cation, Chem. Phys. Lett. 492 (2010) 55–59.
[60] J. Dupont, On the solid, liquid and solution structural organization of imidazolium ionic liquids, J. Braz. Chem. Soc. 15 (2004) 341–350.
[61] X. Chen, J. Li, L. Deng, Biodiesel production using lipases, in: T. Bornscheuer U, red. I (Eds), Lipid modification by enzymes and engineered microbes, Elsevier Inc., UK, 2018, pp. 203-238.
[62] S.H. Ha, M.N. Lan, S.H. Lee, S.M. Hwang, Y.M. Koo, Lipase-catalyzed biodiesel production from soybean oil in ionic liquids, Enzyme Microb. Technol. 41 (2007) 480–483.
[63] P. Antonia, F. van Rantwijk, R.A. Sheldon, Effective resolution of 1-phenyl ethanol by Candida antarctica lipase B catalysed acylation with vinyl acetate in protic ionic liquids (PILs), Green Chem. 14 (2012) 1584-1588.
[64] N.L. Mai, Y.M. Koo, Compatibility of ionic liquids with enzymes, in: Z. Fang, R.L. Smith (Jr.), X. Qi (Eds.), Production of Biofuels and Chemicals with Ionic Liquids, Netherlands Springer, Dordrecht, 2014, pp. 257–273.
[65] R.Y. Cabrera-Padilla, E.B. Melo, M.M. Pereira, R.T. Figueiredo, A.T. Fricks, E. Franceschi, Á.S. Lima, D.P. Silva, C.M.F. Soares, Use of ionic liquids as additives for the immobilization of lipase from Bacillus sp., J. Chem. Technol. Biotechnol. 90 (2014) 1308–1316.
[66] B. Réjasse, T. Besson, M.-D. Legoy, S. Lamare, Influence of microwave radiation on free Candida antarctica lipase B activity and stability, Org. Biomol. Chem. 4 (2006) 3703–3707.
[67] I.M. Atadashi, M.K. Aroua, A.R.A. Aziz, N.M.N. Sulaiman, Refining technologies for the purification of crude biodiesel, Appl. Energy. 88 (2011) 4239–4251.
[68] Z. Yang, K.-P. Zhang, Y. Huang, Z. Wang, Both hydrolytic and transesterification activities of Penicillium expansum lipase are significantly enhanced in ionic liquid [BMIm][PF6], J. Mol. Catal. B Enzym. 63 (2010) 23–30.
[69] A. Berthod, M.J. Ruiz-Ángel, S. Carda-Broch, Recent advances on ionic liquid uses in separation techniques, J. Chrom. 1559 (2018) 2-16.
[70] M. Guncheva, K. Paunova, M. Dimitrov, D. Yancheva, Stabilization of Candida rugosa lipase on nanosized zirconia-based materials, J. Mol. Catal. B Enzym. 108 (2014) 43–50.
[71] P. Lozano, T. De Diego, D. Carrie, M. Vaultier, J.L. Iborra, Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis, Biotechnol. Lett. 23 (2001) 1529–1533.
[72] M. Wlazło, K. Paduszyn, U. Doman, U. Domańska, M. Wlazło, K. Paduszyński, Extraction of butan-1-ol from aqueous solution using ionic liquids: An effect of cation revealed by experiments and thermodynamic models, Sep. Purif. Technol. 196 (2018) 71–81.
[73] H. Xing, T. Wang, Z. Zhou, Y. Dai, The sulfonic acid-functionalized ionic liquids with pyridinium cations: Acidities and their acidity–catalytic activity relationships, J. Mol. Catal. A Chem. 264 (2007) 53–59.
[74] P. Lozano, J.M. Bernal, G. Sánchez-Gómez, G. López-López, M. Vaultier, How to produce biodiesel easily using a green biocatalytic approach in sponge-like ionic liquids, Energy Environ. Sci. 6 (2013) 1328–1338.
[75] M. Cvjetko Bubalo, A. Jurinjak Tušek, M. Vinković, K. Radošević, V. Gaurina Srček, I. Radojčić Redovniković, Cholinium-based deep eutectic solvents and ionic liquids for lipase-catalyzed synthesis of butyl acetate, J. Mol. Catal. B Enzym. 122 (2015) 188–198.
[76] J. Yang, Y. Feng, T. Zeng, X. Guo, L. Li, R. Hong, T. Qiu, Synthesis of biodiesel via transesterification of tung oil catalyzed by new Brönsted acidic ionic liquid, Chem. Eng. Res. Des. 117 (2017) 584–592.
[77] N.I. Ruzich, A.S. Bassi, Investigation of enzymatic biodiesel production using ionic liquid as a co-solvent, Can. J. Chem. Eng. 88 (2010) 277–282.
[78] S.J. Nara, J.R. Harjani, M.M. Salunkhe, Lipase-catalysed transesterification in ionic liquids and organic solvents: a comparative study, Tetrahedron Lett. 43 (2002) 2979–2982.
[79] F. Su, C. Peng, G.-L. Li, L. Xu, Y.-J. Yan, Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid, Renew. Energy. 90 (2016) 329–335.
[80] P. Fan, S. Xing, J. Wang, J. Fu, L. Yang, G. Yang, Sulfonated imidazolium ionic liquid-catalyzed transesterification for biodiesel synthesis, Fuel, 188 (2017) 483–488.
[81] Y. Feng, L. Li, X. Wang, J. Yang, T. Qiu, Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel, Energy Convers. Manag. 153 (2017) 649–658.
[82] S. Park, F. Viklund, K. Hult, R.J. Kazlauskas, Vacuum-driven lipase-catalysed direct condensation of l-ascorbic acid and fatty acids in ionic liquids: synthesis of a natural surface active antioxidant, Green Chem. 5 (2003) 715–719.
[83] S. Adak, R. Banerjee, A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant, Carbohydr. Polym. 150 (2016) 359–368.
[84] E. Abdulmalek, H.S.M. Saupi, B.A. Tejo, M. Basri, A.B. Salleh, R.N.Z.R.A. Rahman, M.B.A. Rahman, Improved enzymatic galactose oleate ester synthesis in ionic liquids, J. Mol. Catal. B Enzym. 76 (2012) 37–43.
[85] M.C. Villalobos, A.G. Gonçalves, M.D. Noseda, D.A. Mitchell, N. Krieger, A novel enzymatic method for the synthesis of methyl 6-O-acetyl-α-D-glucopyranoside using a fermented solid containing lipases produced by Burkholderia contaminans LTEB11, Process Biochem. 73 (2018) 0–1.
[86] S. Gholivand, O. Lasekan, C. Ping, F. Abas, L. Sze, Comparative study of the antioxidant activities of some lipase-catalyzed alkyl dihydrocaffeates synthesized in ionic liquid, Food Chem. 224 (2017) 365–371.
[87] P.L.G. Martins, A.R. Braga, V.V. de Rosso, Can ionic liquid solvents be applied in the food industry?, Trends Food Sci. Technol. 66 (2017) 117–124.
[88] M.K. Potdar, G.F. Kelso, L. Schwarz, C. Zhang, M.T.W. Hearn, Recent developments in chemical synthesis with biocatalysts in ionic liquids, Molecules. 20 (2015) 16788–16816.
[89] A.I. Siriwardana, Industrial applications of ionic liquids, in: A. J. Torriero (Ed.), Electrochemistry in ionic liquids, Springer International Publishing, New York, 2015, pp. 563-603.
[90] Proionic, Ionic Liquids par Excellence,, 2018 (accessed October 8, 2018).
[91], Ionic Liquids Technologies,, 2018 (accessed October 8, 2018).
[92] X. Liang, Novel acidic ionic liquid polymer for biodiesel synthesis from waste oils, Appl. Catal. A Gen. 455 (2013) 206–210.
[93] E. Ra, F. Mirnezami, Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application, J. Mol. Struct. 1130 (2017) 296–302.
[94] W. Xie, M. Huang, Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite : Characterization and application for biodiesel production, Energy Convers. Manag. 159 (2018) 42–53.
[95] J.M. Berg, J.L. Tymoczko, L. Stryer, The Michaelis-Menten model accounts for the kinetic properties of many enzymes, in: Biochemistry,WH Freeman and Company, New York, 2002.
[96] Z. Yang, Y.-J. Yue, W.-C. Huang, X.-M. Zhuang, Z.-T. Chen, M. Xing, Importance of the ionic nature of ionic liquids in affecting enzyme performance, J. Biochem. 145 (2008) 355–364.
[97] X. Wan, X. Xiang, S. Tang, D. Yu, H. Huang, Y. Hu, Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups, Colloids Surfaces B Biointerfaces. 160 (2017) 416–422.
[98] X. Cui, J. Cai, Y. Zhang, R. Li, T. Feng, Kinetics of Transesterification of Methyl Acetate and n-Butanol Catalyzed by Ionic Liquid, Ind. Eng. Chem. Res. 50 (2011) 11521–11527.
[99] S. Sun, S. Zhu, Enzymatic preparation of castor oil-based feruloylated lipids using ionic liquids as reaction medium and kinetic model, Ind. Crops Prod. 73 (2015) 127–133.