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Abstract. Efforts to integrate Wire Arc Additive Manufacturing (WAAM) into industrial settings 
drive a focus on refining in-process defect detection. WAAM commonly employs waveform-
controlled welding techniques, like pulsed or controlled dip transfer processes, to enhance material 
properties and reduce heat input. The cyclic nature of voltage and current waveforms in these 
processes suggests that valuable information exists in their frequency content for assessing the 
process state and potential defects. This study introduces the employment of frequency domain 
analyses, utilizing Fast Fourier transform (FFT) and discrete wavelet transform (DWT) 
methodologies, to identify anomalies in welding signal data. Statistical assessments reveal the 
efficacy of online frequency domain analysis in extracting valuable insights across various 
WAAM processes. The research showcases the utility of this information in developing 
unsupervised learning techniques for online anomaly detection systems tailored to WAAM, 
proficient in identifying issues like arc instability, porosity, and geometrical defects caused by arc 
blow and humping. 
1. Introduction 
Wire Arc Additive Manufacturing (WAAM) (Fig. 1) utilizes an electric arc to melt wire feedstock, 
depositing layers to form near net-shape components (Norrish et al., 2021). Although promising 
for large and intricate metal parts, WAAM faces several defects like porosity, humping, arc blow, 
spatter, and lack of fusion (Wu et al., 2018). Anomaly detection in WAAM, crucial for defect 
identification (Reisch et al., 2020), aids in early detection, minimizing defective part production 
and material waste. Current WAAM anomaly detection tends to rely heavily on supervised 
learning (Cheepu, 2023; Li et al., 2022; Nele et al., 2022) , demanding a well-labelled dataset. 
Unsupervised learning, as an alternative, eliminates this complex data labelling (Mattera, Polden, 
et al., 2023) and can detect anomalies by identifying patterns deviating from the expected 
behaviour, using solely normal data for training (Chandola et al., 2009; Omar et al., 2013)), thus 
simplifying the task in an operational industrial setting. While time domain signals offer a degree 
of information, frequency domain analysis emerges as a valuable tool for extracting a diverse range 
of information across different frequency bands, particularly crucial due to the close connection 
between welding waveform frequency content and droplet frequency. The latter, representing the 
rate of molten metal droplet transfer, is essential for monitoring and controlling welding processes 
to prevent defects in weld bead geometry and microstructure. 
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Figure 1: Overview of the WAAM system used in this work. Yaskawa MA2010 motion platform 

with Lincoln PowerWave S500CE welding power source. 
Despite its significance, literature on this subject remains limited and time domain features 

extraction represent the state of art in this field. Current research (Mattera et al., 2023) 
predominantly focuses on supervised learning and acoustic emission sensor applications, leaving 
a notable gap in exploring unsupervised learning within a multi-sensor framework that 
incorporates current and voltage signals (Ramalho et al., 2022; Zhang et al., 2023).  This study 
introduces a novel method for online anomaly detection in WAAM using unsupervised learning 
and frequency domain analysis. In this work the frequency characteristics associated with diverse 
deposition processes, including Pulsed Gas Metal Arc Welding (P-GMAW) and Surface Tension 
Transfer (STT), across materials such as aluminium 4043 alloy, Inconel 718 alloy, mild steel 
ER70S6, and stainless steel 316L have been investigated. In particular, frequency analysis 
techniques like Fast Fourier Transform and Discrete Wavelet Decomposition have been explored 
to extract features from welding voltage and welding current signals. This study demonstrates the 
practicality of frequency domain analysis in evaluating WAAM process quality via unsupervised 
learning techniques for different processes and the applicability for different materials.  
2. Frequency domain analysis of welding signals 
Frequency domain analysis plays a crucial role in data processing and machine learning, serving 
purposes such as signal denoising and feature extraction from time series signals. Two widely 
utilized techniques for this analysis are the fast Fourier transform (FFT) and wavelet analysis. The 
FFT transforms a waveform from the time domain to the frequency domain, representing the signal 
in terms of its constituent sine wave frequencies.  In contrast, wavelet analysis offers greater 
flexibility than the FFT. It can analyse signals with complex frequency content using various 
wavelet functions like Gaussian or Morlet wavelets, enabling analysis at different scales. 
2.1 Fast Fourier Transform analysis. 
The FFT stands as a powerful tool for signal analysis, facilitating the extraction of a signal's 
magnitude spectrum. For a welding current signal (Fig. 2), this spectrum unveils the amplitudes of 
sinusoidal components at different frequencies within the signal. When an intelligent agent learns 
the magnitudes linked to successful deposition and encounters variations in new data, it may 
indicate anomalies suggesting potential defects in the process. Statistical analysis of the FFT 
spectrum provides insights into the energy, frequency peak, and amplitude of the frequency 
response, enabling differentiation between normal and anomalous behaviour. Traditionally, this 
method is applied offline, involving the collection of all welding signal samples to construct a 
comprehensive frequency response at the end of the deposition. 
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Figure 2: The output of a FFT on a welding current signal for a normal deposition (a) and a 

deposition with anomalies (b) of a pulsed-GMAW process. 
However, due to the lack of temporal information, this approach may struggle to localize 

defects, and rapid frequency changes associated with defect formation may not be immediately 
evident in the overall deposition. In such cases, more intricate techniques, like the wavelet 
transform, can be employed with the same concept but yielding superior results by adapting better 
and extracting more information from complex signals that vary in frequency response within time. 
2.2 Discrete Wavelet Transform analysis. 
Although the FFT is applicable for analysing the frequency content of signals, it might not 
effectively detect minor variations in frequency content, e.g. as it happens when signals display 
defects. Hence, in cases of varying frequency content in signals, the Discrete Wavelet Transform 
(DWT) is a more appropriate choice. As showed in Fig. 3, by applying a DWT with a pre-defined 
wavelet shape, details coefficients of each decomposition may be obtained and features can be 
derived from them, such as the standard deviation of different decomposition levels, and these 
features can be used for further analysis. 

 
Figure 3: DWT of the input signal allows to decompose it in several detail and approximation 
coefficients which, as for the results of a FFT, may be used to identify anomalous behaviour.  
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3. Experiments and Selected Results 
3.1. Setup and Data collection 
An experimental study was conducted to demonstrate the utility of the presented frequency-based 
analysis methods to extract features that allow to differentiate normal and anormal behaviour 
during the deposition process. In these experiments, single-bead walls (100 mm in length), were 
deposited in a layer-by-layer fashion via the conventional robotic welding system. A number of 
different consumables were used, each coupled with suitable welding processes and associated 
parameters, which are outlined in Table 1. Despite multiple layers being deposited during the 
experimental campaign, this work primarily centres on presenting results by comparing layers 
deposited under standard operating conditions with layers that displayed defects. These defects 
encompassed issues such as humping, variations in geometry, porosity and arc instability during 
the deposition process, as shown in Fig. 4.  Two different processes have been analysed in this 
work. Pulsed GMAW is used for the deposition of Aluminium 4043, Inconel 718 and Stainless 
steel 316L, while STT is employed for mild-steel ER70S-6.  In the P-GMAW process, the power 
source alternates between high and low currents during each welding cycle. This pulsing action 
provides better control over the weld pool and reduces heat input, minimizing the risk of 
overheating and distortion. On other hand, STT is a modified short-circuit transfer process 
developed by Lincoln that utilizes the surface tension of the molten metal to control the transfer of 
droplets. Both techniques are employed in WAAM thanks to the lower heat input, which reduce 
final component’s distortion and residual stress. (Pan et al., 2018) 

 
Table 1: Experimental campaign conducted in this work. 

Material Welding 
process 

WS 
[mm/min] 

WFS [m/min] CTWD 
[mm] 

Quality Observations 

Aluminium 
4043 P-GMAW 380 7 12 Normal 

400 7 12 Geometry defect 

Inconel 718 P-GMAW 600 8.5 15 Normal 
600 8.5 10 Instability 

316L P-GMAW 750 2 20 Normal 
750 2 20 Humping 

ER70S-6 STT 450 4.5 25 Normal 
450 4.5 30 Porosity and instabilities 

 

 
Figure 4: Detected defects. A: 4043 Aluminium i) normal deposition, ii) undesired geometry 
defect; B: stainless steel 316L i) normal deposition, ii) humping defect; C: ER70S6 steel i) 

normal deposition, ii) porosity defect. 
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3.2. Data processing  
The gathered data, which includes welding current and welding voltage, was simultaneously 
recorded, and both spectra were analysed. To develop an online anomaly detection, the data was 
divided into 1-second intervals, with each interval consisting of 5000 samples due to a sampling 
frequency of 5kHz. A normalization process was applied to the data. Notably, the maximum and 
minimum values obtained during the normalization of the normal signal were used to scale the 
signals of anomalous conditions. From this dataset, 20 features were extracted per second using 
both FFT and a 3-level DWT with a third-order Gaussian wavelet. Specifically, peak amplitude 
(PA) and corresponding frequency (PF) were extracted from both voltage and current signals using 
FFT. Additionally, two features were extracted from each decomposition level in the DWT: 
Standard Deviation per Level, offering insights into the distribution of wavelet coefficients across 
various decompositions, and Average Energy of each level, providing a measure of the overall 
importance of that component in the signal. In total, 20 features were extracted, see Fig. 5. 

 
Figure 5: Proposed statistical methodology to extract frequency domain features from welding 

current and welding voltage signals. 
3.3. Results  
For visualization purposes, Principal Component Analysis (PCA) was utilized to reduce the 
dimensionality of normal samples to four principal components. The use of a 3D-scatter plot 
enables the assessment of the effective discrimination between normal and anomalous data based 
on the extracted features. Upon observing Figs. 6, 7, 8, and 9, it becomes apparent that the extracted 
features, represented through their principal components, allow for the division of the feature 
space. This division facilitates the distinction between portions of the deposition associated with 
the normal layer (depicted as green spots) and certain portions of the other layer exhibiting defects 
in some areas. It is evident that by employing a machine learning algorithm, such as the Isolation 
Forest, the feature space of normal deposition can be learned. Furthermore, using the extracted 
features from each second of deposition, it becomes possible to detect various types of anomalies 
in different materials. 
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Figure 6: Scatter plots of the 4 principal components which demonstrated that the extracted 

frequency domain features may be used to distinguish normal deposition from humping in pulsed 
GMAW of 316L. 

 
Figure 7: Scatter plots of the 4 principal components of extracted frequency features during a 

deposition via pulsed GMAW process of aluminium 4043 of a normal layer and a layer subject to 
a geometry defect due to arc blow. 
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Figure 8: Scatter plots of the 4 principal components of extracted frequency domain features 

demonstrating that unsupervised learning may be applied to distinguish normal data from 
anomalous data like spatter in Inconel 825.  

 
Figure 9: Scatter plots of the 4 principal components of extracted frequency domain features for 
a normal deposition via Surface Tension Transfer process of ER70S-6 and of a layer presenting 

defects such as porosity and instabilities. 
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4. Limitations and future opportunities 
The methodology presented in this study utilizes time series and their frequency analysis to 
identify anomalies. While the scatter plot demonstrates the feasibility of employing this technique 
for developing an application capable of detecting defects, the manual extraction of features poses 
a challenge in determining which features are pertinent for distinguishing between a successful 
deposition and an anomalous one. To address this challenge, a more intuitive and informative 
approach can be adopted by incorporating additional information through time-frequency analysis. 
The Continuous Wavelet Transform, for instance, allows the generation of spectrograms that 
provide insights into the frequency content of different wavelets over time. The wealth of 
information derived from these analyses can be converted into images and further analyzed using 
image processing techniques. Numerous features can be extracted using various filters, or 
automatic features can be obtained through deep learning techniques such as autoencoders. This 
application of image processing opens up new frontiers for signal analysis, proving to be 
particularly powerful due to the evident differences between spectrograms associated with normal 
and anomalous conditions, as illustrated in Figs. 10 and 11 for ER70-6 obtained by STT process 
and Inconel 718 via P-GMAW. These techniques can be employed not only for online defect 
detection but also for localizing anomalies in time at the end of the deposition, as time information 
is present in the final output. Furthermore, an in-depth analysis of the hidden pattern in anomaly 
clusters can be used to develop semi-supervised classifier. 

 
Figure 10: Scalogram obtained from current signal using a Morlet CWT of (a) normal 

deposition and (b) anomalous deposition with porosity of ER70S6 via STT process. 

 
Figure 11: Scalogram obtained from current signal using a Morlet CWT of (a) normal 

deposition and (b) anomalous deposition with spatter and arc instability of Inconel 825 via 
pulsed-GMAW process. 

These techniques can be employed not only for online defect detection but also for localizing 
anomalies in time at the end of the deposition, as time information is present in the final output. 
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Furthermore, an in-depth analysis of the hidden pattern in anomaly clusters can be used to develop 
semi-supervised classifier. 
Conclusion 
Identifying process anomalies in WAAM applications is crucial for enabling timely intervention 
in potential repairs. Anomaly detection approaches in this technology area typically rely on 
supervised machine learning techniques. While supervised techniques exhibit high performance, 
unsupervised methods offer a reduction of costs related to defect generation and post-processing 
activities for label generation. However, unsupervised techniques introduce higher uncertainty in 
output generation, leading to lower performance. This study introduces a method for feature 
extraction from frequency domain analysis of welding voltage and welding current signals. 
Utilizing a multi-sensor monitoring system that is less susceptible to external factors, both FFT 
and DWT are applied for online feature extraction in the frequency domain in different frequency 
bandwidths. These features, extracted at one-second intervals, proved to effectively distinguish 
between defect-free and anomalous deposition. The technique successfully identifies defects such 
as humping, spatter, geometric irregularities due to arc blow, and porosity in materials such as 
Inconel 825, Aluminium 4043, mild steel ER70S, and stainless steel 316L, showing that this 
approach can be used for different welding waveform which depends by both process and materials 
employed. However, limitations associated with manual feature extraction may impact the ultimate 
performance of the unsupervised algorithm, which serves as the initial layer of a defect detection 
module in an intelligent production system. To address this, future developments will explore the 
integration of image processing techniques and a comparison with more advanced time-frequency 
domain analyses to enhance the anomaly detection capabilities. 
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