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Abstract. The utilization of the Finite Element Method (FEM) in forming simulation presents the 
possibility for a thorough examination of the deformation behavior exhibited by engineering 
textiles during the draping processes. In macroscopic forming simulations the relevant forming 
effects are depicted in a homogenized way. Slippage of fibers is an essential deformation 
mechanism of non-crimp fabrics (NCF). Experimentally, this is already observed at coupon level 
performing the bias-extension test (BET). Significant slippage occurs locally in the transition areas 
between shear zones with deviating shear angles. In existing macroscopic simulation approaches, 
roving slippage is only considered homogenized over the shear zones. A localized slip between 
individual fiber rovings cannot be modelled. Therefore, in the present work a neighboring element 
method for ABAQUS/EXPLICIT is introduced. This method uses multiple subroutines to transfer 
information between elements. The functionality of the neighboring method is confirmed by 
calculating a cross element gradient of the shear angle. The calculation of the shear angle gradient 
is shown in the simulation of the BET, giving rise to the transition zones which have been 
experimentally highlighted. 
Introduction 
Lightweight construction is a holistic development concept that aims to reduce the mass of a 
system while taking economic and ecological constraints into account [1]. Due to their fiber 
architecture continuous fiber-reinforced composites offer great potential for lightweight 
construction. A deep understanding of the draping process of engineering textiles is necessary to 
achieve optimal component design. The FEM is a proven method for simulating the forming 
behavior and process-induced defects of fiber-reinforced composites. 

Due to their difference in fiber architecture, woven fabrics and NCF exhibit different draping 
behavior. While woven fabrics have an intrinsic cohesion, for NCF this is realized extrinsically 
through the stitching, resulting in straight fibers without undulations. Therefore, the shear behavior 
and thus the forming behavior of NCF is strongly dependent on the position of the stitching. 
Compared to bidirectional NCF the forming of unidirectional (UD-) NCF is predominantly 
influenced by simple shear rather than pure shear [2], leading to a more challenging draping 
process. The very high longitudinal stiffness of UD-NCF brings a greater degree of susceptibility 
for localized draping effects such as fiber gapping, slippage of fiber rovings and waviness or fiber 
curvature [3–6]. 

To determine the forming behavior of fiber-reinforced composites, commonly experimental 
tests are carried out. The BET is widely used to characterize the in-plane shear behavior of fabrics. 
For the BET, the pin-jointed net assumption is often made, which assumes that fiber crossings act 
as rotational knots and that fibers are inextensible [7]. This assumption is generally recognized for 
woven fabrics and results in a deformation with three distinct shear zones [4,7,8]. For woven 
fabrics, in one of the zones pure shear occurs. In the second zones only half of the shear from the 
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first zone occurs, while in the third zones no shear deformation arises. Although NCF do not have 
fiber crossings and therefore the kinematic assumption of pure rotation is not valid, the BET is still 
used for characterizing the in-plane shear behavior. While applying the BET on bidirectional NCF 
it can be observed that roving slippage occurs in the transition of the shear zones defining areas 
with a deviation of the shear angle [9]. It has been shown experimentally that when performing 
the BET on UD-NCF the different zones are less distinct from each other and more zones between 
high shear and zero shear occur [6,10]. 

To simulate technically relevant parts in forming accurately, simulation models at a 
macroscopic level of detail are necessary. Due to better drapability, the focus in macroscopic 
simulation models has historically been set on woven fabrics [11–15]. Simulations of NCF have 
mostly been carried out on the mesoscopic level [3,16–18]. In mesoscopic simulations, the fibers 
and the stitching are modeled discretely and thus locally occurring forming effects can be explicitly 
resolved. More recently, simulation models for NCF have been developed also on a macroscopic 
scale [19–22]. In order to depict the relevant forming mechanisms occurring on the meso-scale, 
macroscopic approaches need to capture them in a homogenized way. This results in predictions 
of areas with a high likelihood of the occurrence of local effects. These approaches locally assume 
constant material properties for each element. Therefore, effects induced by their surroundings like 
strain gradients are not considered. 

The consideration of localized forming effects in macroscopic simulations induces the need for 
a neighboring element method. This paper will present the implemented framework of such a 
method within the commercial FEM solver ABAQUS/EXPLICIT by using multiple user subroutines 
and allocatable arrays. It has been experimentally documented that roving slippage occurs while 
conducting the BET for NCF [9]. To the best of the authors’ knowledge, there is no macroscopic 
model that considers localized roving slippage for NCF. Since the area of occurrence is limited to 
areas with a large gradient of the shear angle, a method is developed to determine a spatial gradient 
from a scalar quantity inside a FORTRAN subroutine. The cross element gradient calculation is used 
to demonstrate the functionality of the framework for the neighboring method and is applied to 
simulation of the BET. 
Gradient calculation based on a neighboring element method 
To consider the modelling of localized draping effects in macroscopic forming simulations, non-
local information in the onset area of the effects needs to be known. For woven fabrics such a non-
local method has already been utilized by Steer et al. [23]. They calculate the in-plane curvature 
of the fibers by passing a fictive Bernoulli beam through a reference element and its neighbor 
element by using a neighboring element method. 

ABAQUS/EXPLICIT has been utilized as a simulation tool for draping simulation of various 
fabrics [6,12,13,20,24]. Since there is no built-in method for determining the neighboring 
relationships between elements, the implemented method will be presented in the following [25]. 
Additionally, it will also be shown how a cross element spatial gradient is calculated from a scalar 
quantity based on the non-local framework. 

Neighboring element method. The implemented non-local framework combines user 
subroutines and regular FORTRAN subroutines. Since external subroutines are used, the user 
subroutine VEXTERNALDB is needed. This subroutine is called multiple times during the 
analysis and enables the call of external programs as well as the data transfer between external and 
user subroutines. While submitting an analysis within ABAQUS the so-called input file is written 
out. This file establishes the foundation of the neighboring method, as it contains the discretization 
and thereby the element-node relationship. The input file is read in and processed in external 
subroutines. After processing the mesh information, the element-to-element connection is 
determined and stored in global arrays to make them accessible within other subroutines.  
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Gradient calculation. The construction of a cross element spatial gradient from an element-
based scalar field variable is commonly applied for solving computational fluid dynamic problems. 
An extensively investigated and commonly used method is the cell-average weighted least-squares 
(WLSQ) gradient method [26,27]. The WLSQ gradient method will be derived below and the 
adaptions for the draping simulation will be shown. The derivation is performed for an arbitrary 
number of neighbor elements while the implementation will only consider the stencil of first edge 
neighbors (en1) as shown in Figure 1. 

Starting point for the WLSQ gradient method yields the first-order Taylor series expansion of 
the shear angle 𝛾𝛾 

𝛾𝛾𝐽𝐽 = 𝛾𝛾𝐼𝐼 + ∇𝛾𝛾𝐼𝐼 ∙ 𝒅𝒅𝐼𝐼𝐽𝐽 + 𝐻𝐻 (1) 

with 𝛾𝛾𝐼𝐼 and 𝛾𝛾𝐽𝐽 being the shear angle on the respective element 𝐼𝐼, 𝐽𝐽 and ∇𝛾𝛾𝐼𝐼 being the spatial gradient 
of the element 𝐼𝐼 in 𝑥𝑥-, 𝑦𝑦- and 𝑧𝑧-direction. The higher-order terms of the Taylor series 𝐻𝐻 are 
neglected in the following. The variable 𝒅𝒅𝐼𝐼𝐽𝐽 is the direction vector from centroid of element 𝐼𝐼 to 
centroid of element 𝐽𝐽. 
 

 
Fig. 1: Stencil of first edge neighbors (en1) showing the reference element 𝐼𝐼 (grey) and its 

neighboring elements 𝐽𝐽. 
It is worth noting that the indexes in capital letters are not indexes in the context of Einstein's 
summation convention but serve to identify the reference element 𝐼𝐼 and the neighboring elements 
𝐽𝐽. For an arbitrary number of elements 𝑁𝑁 this leads to an overdetermined linear system of the form 
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which can be summarized as 𝑫𝑫∇𝛾𝛾𝐼𝐼 = 𝒃𝒃. The operator Δ can be interpreted as Δ(∙)𝐼𝐼𝐽𝐽 = (∙)𝐽𝐽 − (∙)𝐼𝐼. 
As large element aspect ratios can be attained during the draping simulation, stabilization in the 
form of weights is introduced to Eq. (2), resulting in 

𝑾𝑾𝑫𝑫∇𝛾𝛾𝐼𝐼 = 𝑾𝑾𝒃𝒃. (3) 

The weighting matrix 𝑾𝑾 is a diagonal matrix containing the weights 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼𝐽𝐽 = 1/�𝒅𝒅𝐼𝐼𝐽𝐽�
p
 with 𝑖𝑖 =

1, … ,𝑁𝑁 and the parameter p. Solving the system of Eq. (3) is done by multiplying both sides from 
the left with 𝑫𝑫⊤𝑾𝑾. This results in the left-hand side having a quadratic form and therefore it can 
be inversed. This leads to 
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∇𝛾𝛾𝐼𝐼 = (𝑫𝑫⊤𝑾𝑾𝑾𝑾𝑫𝑫)−1𝑫𝑫⊤𝑾𝑾𝑾𝑾𝒃𝒃. (4) 

From Eq. (4) it can be seen that through the matrix 𝑫𝑫 and its transpose the distance between the 
centroids is squared in the first inverted part while it is only linear in the second part. This yields 
a dependency of the dimension of the gradient on the element size of the mesh. To circumvent 
this, the matrix 𝑫𝑫 is normed as follows 

𝑫𝑫norm =
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The vector 𝒅𝒅norm,𝐼𝐼𝐽𝐽 and the matrix 𝑫𝑫norm therefore only contain directional information. The 
matrix 𝑫𝑫norm is substituted into Eq. (4) instead of 𝑫𝑫. 

Calculating the gradient using the WLSQ method leads to the gradient components expressed 
in the global configuration {𝒆𝒆𝑖𝑖}. To utilize the gradient in the context of forming simulation its 
components need to be expressed in the current configuration {𝒂𝒂𝑖𝑖}. Figure 2 exemeplifies the 
transformation between the different configurations, resulting in the non-orthogonal principal 
material orientations {𝒂𝒂𝑖𝑖} in the current configuration. Since the initial fiber orientation {𝑨𝑨𝑖𝑖} does 
not have to be aligned with the global configuration, a preceding transformation is necessary. 
Based on the assumption of a cross-ply NCF this transformation is a simple orthogonal rotation 𝑹𝑹. 
The deformation gradient 𝑭𝑭 relates the initial {𝑨𝑨𝑖𝑖} and the current configuration {𝒂𝒂𝑖𝑖}. Therefore, 
the gradient components with respect to the current configuration are obtained through 

∇𝛾𝛾𝑖𝑖,{𝒂𝒂𝑖𝑖} = (𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖−1∇𝛾𝛾𝑖𝑖,{𝒆𝒆𝑖𝑖}. (6) 

 

 
Fig. 2: Schematic illustration of the transformations between global, initial, and current 

configuration. 
Numerical verification 
To investigate the WLSQ gradient method for forming simulation of NCF a planar small-scale 
example is examined. The two applied element-based fields of a synthetic scalar variable are 
shown in Figure 3. For investigational purposes, in both depicted cases the initial and current 
configurations coincide. The applied field in Figure 3 a) will be referred to as diagonal distribution. 
The rotation matrix 𝑹𝑹diag corresponds to a rotation of 45° about the 𝒆𝒆3-axis. The scalar field shown 
in Figure 3 b) will be referred to as horizontal distribution. All configurations coincide and it 
follows that 𝑹𝑹horiz = 𝑰𝑰. 
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Fig. 3: Visualization of the two considered distributions of a synthetic element-based scalar 

variable γ. 
The calculated gradient of the synthetic scalar variable is shown in Figure 4. The elements 

located at the outer edge of the meshes are not fully surrounded by neighbor elements. Whenever 
a reference element is missing one neighboring element and if the remaining neighboring element 
has a different value of the scalar field variable than the reference element (Δ𝛾𝛾𝐼𝐼𝐽𝐽 ≠ 0), this leads 
to so-called boundary effects. These boundary effects are recognizable in the bottom left and top 
right corner in Figure 4. Due to the undeformed state of the mesh and the fact that triangle elements 
are used, the missing element leads to one of the two components being zero (cf. Fig. 4 a) and b)). 
This depends on whether the vector 𝒅𝒅norm,𝐼𝐼𝐽𝐽 of the missing element 𝐽𝐽 contains the 𝒆𝒆1- or the 𝒆𝒆2-
direction. If 𝒅𝒅norm,𝐼𝐼𝐽𝐽 = |𝒆𝒆1| does not appear in the matrix 𝑫𝑫norm it results in the gradient 
component in 𝒆𝒆2-direction being zero. The non-zero components then have a value that exhibits 
the value of the scalar field variable 𝛾𝛾. The gradient components of the inner elements in 
Figures 4 a) and b) in the global configuration are equal in amount. Rotating the gradient to the 
current configuration using 𝑹𝑹diag results in disappearing of the gradient component in the direction 
of 𝒂𝒂1 for the inner elements (cf. Figure 4 c)). Only the gradient in the 𝒂𝒂2-direction exists in case 
of neglecting the elements with a boundary influence. The gradient component's magnitude of the 
inner elements is less than that of the element-based scalar variable. However, the value of the 
gradient is also dependent on the choice of the weights. In this work a weight with p = 2 is used. 
Comparing the gradient components with the given diagonal distribution, this is a sufficient result. 

Applying the WLSQ gradient method on the horizontal distribution leads to the result depicted 
in Figure 5. The Figure shows that a gradient occurs in the 𝒆𝒆1-direction. Comparing this to the 
given horizontal distribution, the existence of the gradient component in the direction of 𝒆𝒆1 is not 
desirable. However, the occurrence of a gradient in the 𝒆𝒆1-direction cannot be prevented. The 
reason for this is the WLSQ method, as the direction between the reference and neighboring 
element 𝒅𝒅norm,𝐼𝐼𝐽𝐽 in the matrix 𝑫𝑫norm also influences the gradient although the difference between 
the scalar variable Δ𝛾𝛾𝐼𝐼𝐽𝐽  vanishes. However, this effect is a local error that disappears in a global 
consideration when integrating the incorrect component over the domain. It can be stated that the 
gradient in the 𝒆𝒆2-direction is 1.5 times greater in terms of the magnitude. 
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Fig. 4: Results of the gradient component 1 a) and component 2 b) in the global configuration 
{𝒆𝒆𝑖𝑖} and component 1 c) and component 2 d) in the current configuration {𝒂𝒂𝑖𝑖} of the diagonal 

distribution. 

 
Fig. 5: Results of the gradient component 1 a) and component 2 b) in the global configuration 

{𝒆𝒆𝑖𝑖} of the horizontal distribution. The current configuration {𝒂𝒂𝑖𝑖} equals the global 
configuration {𝒆𝒆𝑖𝑖} in this case. 

As shown in the above small-scale examples, the WLSQ gradient method as presented here is 
not yet able to make a quantitative, but only a qualitative statement on the occurrence of a gradient 
of an element-based scalar variable. It is sufficient to localize the transition zones between areas 
with a high deviation in a scalar variable such as the shear angle. The potential of the method can 
be seen, but challenges still need to be overcome. In Figure 4 the problem of elements at the 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 467-476  https://doi.org/10.21741/9781644903131-52 

 

 
473 

boundary is pointed out, while an incorrect component is predicted at local scale, which disappears 
in a global consideration (cf. Fig. 5). 
Application on the bias extension test 
The model for simulating the BET is created in ABAQUS/EXPLICIT. The dimensions of the 
considered UD-NCF are 320 mm × 160 mm. The geometry is discretized using 4096 triangular 
elements, each with an edge length of 5 mm. The nodes at 𝑥𝑥2 = 0 mm are pinned in their degrees 
of freedom. The simulation is carried out displacement-controlled, with the displacement of 𝑢𝑢2 =
80 mm being applied to the nodes at 𝑥𝑥2 = 320 mm. The fibers and stitching are initially 
orthogonal, which is reflected by the {𝑨𝑨𝑖𝑖}-frame. The fibers are oriented along the 𝑨𝑨1-direction 
and the stitching along the 𝑨𝑨2-direction. To transfer the {𝑨𝑨𝑖𝑖}-frame to the global frame {𝒆𝒆𝑖𝑖} the 
rotation matrix 𝑹𝑹diag is used. 
 

 
Fig. 6: Simulation results of the BET showing the shear angle distribution in a) and the 

components of the gradients in the global b), c) and current d), e) configuration. 
The material model chosen is the hyperelastic St. Venant-Kirchhoff model [28]. The model is 

implemented in the user subroutine VUMAT The formulation for the second Piola–Kirchhoff 
stress tensor 𝑺𝑺 reads 

𝑺𝑺 =  ℂ[𝑬𝑬], (7) 

where ℂ is the stiffness tensor and 𝑬𝑬 is the Green-Lagrangian strain tensor. The stiffnesses remain 
constant during the simulation and their values are selected to qualitatively represent the forming 
behavior of the NCF for simulating the BET. Since the fibers are significantly stiffer than the 
stitching, an order of magnitude of three is defined between their stiffnesses. Consequently, for 
the Young's modulus of the fiber follows 𝐸𝐸1 = 1000 MPa and for Young's modulus of the stitching 
𝐸𝐸2 = 1 MPa. For the shear stiffness a shear modulus 𝐺𝐺12 = 0.5 MPa is used. If the shear modulus 
is set too low, the middle section of the NCF will collapse. The Poisson's ratio is omitted. Since 
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the BET is a planar problem these material parameters are sufficient to describe and construct the 
orthotropic stiffness tensor ℂ in Eq. (7). 

In Figure 6 the simulation results of the BET are visualized. The outermost row of elements is 
neglected in the figure because the gradient has a significantly higher value there than in the 
interior of the mesh due to the boundary effects. Since the fiber and stitching stiffnesses are three 
orders of magnitude apart, the three zones with constant shear deformation, as characteristic for 
woven fabrics, do not occur [7]. The deformation in the middle zone is not a pure shear 
deformation for UD-NCF with a maximal shear angle 𝛾𝛾 ≈ 49 ° (cf. Figure 6 a)). This behavior 
was demonstrated experimentally on the BET [6,10]. Along the connection of AB���� as well as CD���� 
there is a steep decrease in the shear angle. In addition, a smaller deviation can be seen in the 
vicinity of E and F respectively. Applying the introduced WLSQ method leads to the gradient 
components shown in Figure 6 b)-e). The gradient components along the transition zones AB���� and 
CD���� stand out particularly. In the remaining mesh except the areas around E and F, the gradient 
components show very small values ∇𝛾𝛾𝑖𝑖 < 1.0 °. The component in the 𝒆𝒆2-direction is more 
pronounced than in the 𝒆𝒆1-direction. The rotation and application of the deformation gradient leads 
to the components in the material configuration {𝒂𝒂𝑖𝑖} in Figure 6 d) and e). Similarly, it is 
observable that the component along the orientation of the fibers 𝒂𝒂1 is smaller than in the direction 
of the stitching 𝒂𝒂2. The qualitative agreement with the shear angle distribution in Figure 6 a) is 
thus given. 
Conclusion and outlook 
A general framework in ABAQUS/EXPLICIT which allows to consider localized draping effects in 
macroscopic forming simulations is presented. For this purpose, a combination of external 
FORTRAN subroutines and user subroutines is used to implement a neighboring element method. 
The neighbor information stored in global arrays can be retrieved by any other subroutine at 
runtime. The functionality of the neighboring element method is demonstrated in the calculation 
of a cross element gradient of a scalar element-based variable utilizing the cell-average weighted 
least-squares (WLSQ) gradient method. The WLSQ gradient method is first examined on two 
small-scale examples. It is shown that a qualitative statement about the occurrence of gradients 
can be made. Applied on macroscopic simulation of the bias-extension test (BET), the transition 
zones occurring at deviating shear angles are detected. 

To improve of the WLSQ gradient method further extensions are necessary. These include the 
consideration of additional stencils, the mitigation of the boundary effects, and addressing the local 
error of the gradient components. Subsequently the gradient of the shear angle computed using the 
WLSQ method is to be integrated into a hyperelastic material approach based on pseudo-invariants 
by using a suitable coupling mechanism in order to model the localized fiber roving slippage in 
the transition zones. 
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