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Abstract. To predict manufacturing effects in the thermoforming process for fiber reinforced 
plastics the Finite Element Method is widely used. Most macroscopic simulation methods are 
based on conventional two-dimensional shell elements which are not capable of modeling the 
material behavior in thickness direction using constitutive equations. At the same time, standard 
three-dimensional element formulations are not suitable for the forming simulation of thin textiles 
due to numerical locking phenomena and the lack of a possible membrane-bending-decoupling. 
Previous studies focused on a specialized solid-shell element formulation which provides 
anisotropic but purely elastic material modeling. Since purely elastic approaches cannot accurately 
describe the deformation behavior in the thermoforming process, the provided element formulation 
is enhanced to rate-dependent viscoelastic material modeling. Numerical studies are carried out 
that reveal that the membrane-bending-decoupling is preserved for the viscoelastic material model. 
Virtual coupon tests demonstrate the rate-dependent material behavior in the solid-shell element. 
The obtained results show that the general approach of the viscoelastic material behavior within 
the solid-shell element is suitable to address out-of-plane phenomena in thermoforming 
simulations. 
Introduction 
Fiber reinforced plastics (FRPs) like thermoplastic tapes provide great lightweight potential due 
to their high mass specific stiffness and strength while also having the possibility to be tailored for 
specific applications [1]. Precise computer-aided component design is the key to component 
concepts with reliable high load-bearing capacity combined with low masses.  

Most macroscopic simulations of the forming process of thermoplastic tapes are based on 
conventional shell elements [2]. Since FRP components are usually thin, conventional shells 
provide efficient simulation of the in-plane membrane and out-of-plane bending behavior. 
However, the material modeling in thickness direction is not possible since conventional shells are 
only two-dimensional. To enable material modeling in thickness direction three-dimensional 
element types must be used. Standard three-dimensional element formulations are not suitable for 
the forming simulation of thin textiles due to numerical locking phenomena and the lack of a 
possible membrane-bending-decoupling [3]. Therefore, specialized element formulations, like 
solid-shell elements are required.  

The focus of this work is the simulation of the thermoforming process of preimpregnated textile 
composites, e.g., thermoplastic tapes. Due to the influence of the matrix, the material behavior, 
and the bending behavior of preimpregnated FRPs is rate- and temperature-dependent. Hence, 
(thermo-)viscoelastic material modeling is crucial for the proper simulation of the thermoforming 
process of preimpregnated textile composites. Thus, purely elastic approaches are unsuitable for 
modeling the material behavior in forming simulation of thermoplastic composites [4–6]. Dörr et 
al. [7,8] use a Voigt-Kelvin and a generalized Maxwell approach to model the isothermal 
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viscoelastic material behavior. Subsequently, this approach was further developed to a 
thermoviscoelastic material law [9].  

In context of the forming simulation for thermoplastic composite prepregs, Xiong [10] and 
Xiong et al. [11] present a prismatic solid-shell element to display consolidation and compaction. 
The approach is based on a DKT plate element with an additional degree of freedom in the middle 
of the element. A viscoelastic material law based on a generalized Maxwell model is utilized to 
model both the in-plane shear behavior and the compaction behavior. Another approach to display 
non-elastic material properties in thickness direction of preimpregnated textile composites is 
presented by Mulye et al. [12]. A so-called pinching shell element is introduced which is based on 
a shell element. In their work an elasto-plastic material model is chosen  

The 3D hexahedral solid-shell element considered in the present study continues the 
investigations by Schäfer et al. [3,13]. Initially based on the work of Schwarz and Reese [14,15] 
who proposed a solid-shell element with only translational degrees of freedom for isotropic 
material laws, Pagani et al. [16] extended the formulation to the explicit case. Schäfer et al. [3,13] 
enhanced the element formulation for anisotropic elastic material laws. An approach for a 
membrane-bending-decoupling, which is based on a Taylor series approximation of the strain, is 
also presented. The considered solid-shell element is implemented by means of a user-element 
(VUEL) for the FEM solver ABAQUS/EXPLICIT. The implementation of the user-element is done 
using the MATHEMATICA-based programming environment ACEGEN [17] which allows symbolic 
implementation and differentiation in combination with runtime optimization.  

In this work the solid-shell element is extended to viscoelastic material behavior. For this, the 
Voigt-Kelvin model is implemented and evaluated separately for the membrane and the bending 
part. To evaluate the viscoelastic material law, the deformation gradient 𝑭𝑭 is needed to derive the 
deformation rate tensor 𝑫𝑫 from the rate of the Green-Lagrange strain tensor 𝑬𝑬. Since the Green-
Lagrange strain tensor 𝑬𝑬 is modified using the enhanced assumed strain- (EAS) and the assumed 
natural strain- (ANS) method, the corresponding deformation gradient 𝑭𝑭 cannot solely be 
described by the node displacements within the element. Hence, an alternative method to calculate 
an effective deformation gradient 𝑭𝑭tec is presented. An alternative approach to ensure numerical 
stability is considered. It is shown that the decomposition of the membrane- and bending-behavior 
still holds. Numerical studies are carried out to demonstrate the rate-dependency of the 
implemented viscoelastic material behavior for both the membrane and the bending behavior. 
Solid-Shell Element 
Solid-shell formulation. The 3D hexahedral solid-shell element considered in the present study is 
based on the work of Schäfer et al. [3,13]. Its eight nodes have only translational degrees of 
freedom. It is implemented as a user-element (VUEL) in ABAQUS/EXPLICIT. A reduced integration 
scheme is used for the in-plane deformations. Thus, there is only one single integration point in 
the center of the shell plane. Along the thickness direction of the element, multiple integration 
points are located to account for the material behavior in the out-of-plane direction. Analogously 
to Schäfer et al. [3,13], the total Green-Lagrange strain tensor 𝑬𝑬 is modified using the EAS- and 
the ANS-concept. The EAS-concept introduced by Simo et al. [18–20] helps to prevent volumetric 
and Poisson thickness locking by introducing an enhanced strain 𝑬𝑬e. It is added to the compatible 
strain 𝑬𝑬c for the total strain 𝑬𝑬 = 𝑬𝑬c + 𝑬𝑬e. The compatible part 𝑬𝑬c is solely dependent on the 
displacements 𝒖𝒖𝑖𝑖 of the eight nodes within the element. The ANS-method introduced by Hughes 
and Tezduya [21] helps to prevent transverse shear and curvature thickness locking. More 
comprehensive explanations on the ANS- and EAS-concepts are given by [14,15,22]. In the 
following, 𝑬𝑬mod denotes the modified strain using the EAS- and ANS-method.  
Using a Taylor expansion for the compatible strain 𝑬𝑬c with respect to the element-center enables 
the decomposition of the total strain 𝑬𝑬mod into (cf. [13–15]) 
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𝑬𝑬mod = 𝑬𝑬c0�
𝑬𝑬M

+ 𝜁𝜁𝑬𝑬c
ζ + 𝜁𝜁2𝑬𝑬c

ζζ + 𝑬𝑬e�����������
𝑬𝑬B

+ 𝑬𝑬c
hg. (1) 

Here, 𝑬𝑬c0 is the compatible strain in the element-center which is used as the membrane strain 𝑬𝑬M. 
The tensors 𝑬𝑬c

ζ and 𝑬𝑬c
ζζ denote the first and second derivatives of 𝑬𝑬c with respect to the 

isoparametric thickness coordinate 𝜁𝜁. They are used with the enhanced strain 𝑬𝑬e as the bending 
strain 𝑬𝑬B. The remaining parts of the Taylor expansion 𝑬𝑬c

hg  describe the in-plane deformation and 
are used to prevent hourglass deformation. 

Analogously, the stress 𝑺𝑺 can be split into (cf. [13–15]) 

𝑺𝑺 = 𝑺𝑺M∗ (𝑬𝑬M) + 𝑺𝑺B∗ (𝑬𝑬B) + 𝑺𝑺hg �𝑬𝑬c
hg�. (2) 

The stresses 𝑺𝑺M∗  and 𝑺𝑺B∗  describe the membrane and the bending stresses that are related to the out-
of-plane integration. The hourglass stress 𝑺𝑺hg solely depends on 𝑬𝑬c

hg and is used for the hourglass 
stabilization. The combination of Eq. 1 and Eq. 2 enables the membrane-bending decoupling 
within the solid-shell element. All stresses in Eq. 2 are modeled purely elastic by Schäfer et al 
[13].  

Viscoelastic material law. To model the rate-dependency, the Voigt-Kelvin approach is 
considered. It is based on the parallel connection of the elastic part with a viscous part. Thus, the 
second Piola-Kirchhoff stress 𝑺𝑺 using the Voigt-Kelvin model is calculated by [23] 

𝑺𝑺 = 𝑺𝑺elast + 𝑺𝑺visc. (3) 

The elastic part 𝑺𝑺elast is evaluated using the hyperelastic St. Venant-Kirchhoff model [24]  

𝑺𝑺elast = ℂ[𝑬𝑬]. (4) 

Here ℂ is the stiffness tensor and 𝑬𝑬 the Green-Lagrange strain. To evaluate the viscous part 𝑺𝑺visc, 
the isotropic Newton model is used. The viscous law is given by [25] 

𝝈𝝈visc = 2𝜂𝜂𝑫𝑫. (5) 

Here 𝜂𝜂 is the viscosity, 𝑫𝑫 the symmetric part of the velocity gradient, respectively the deformation 
rate tensor, and 𝝈𝝈visc the resulting Cauchy stress. The deformation rate tensor 𝑫𝑫 can be calculated 
dependent on �̇�𝑬 using [23] 

𝑫𝑫 = 𝑭𝑭−⊤�̇�𝑬𝑭𝑭⊤.  (6) 

To apply Eqs. 3 to 6 on the solid-shell element, the Green-Lagrange strain tensor 𝑬𝑬 is used for 
the elastic part (Eq. 3) and the rate �̇�𝑬 for the viscous part (Eq. 5 and Eq. 6). In Eq. 6 the deformation 
gradient 𝑭𝑭 is required to obtain 𝑫𝑫. However, within the solid-shell element the total Green-
Lagrange strain tensor is modified using the EAS- and the ANS-method. Consequently, the 
deformation gradient 𝑭𝑭 that is derived solely from the nodal displacements 𝒖𝒖𝑖𝑖 does not necessarily 
describe the same deformation state as 𝑬𝑬mod. Due to the symmetry of strain tensors, it is impossible 
to derive 𝑭𝑭 directly from 𝑬𝑬. Thus, a suitable approximation 𝑭𝑭tec for 𝑭𝑭 in dependency of 𝑬𝑬M, 
respectively 𝑬𝑬B, has to be defined to evaluate Eq. 6. Hauptmann et al. [26] presented a procedure 
to calculate a deformation gradient 𝑭𝑭tec from a modified Green-Lagrange strain tensor 𝑬𝑬tec which 
is adopted in this work. For this, the polar decomposition of 𝑭𝑭tec is performed 
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𝑭𝑭tec = 𝑹𝑹𝑼𝑼tec. (7) 

The stretch tensor 𝑼𝑼tec is a symmetric second-order tensor. It can be derived from 𝑬𝑬tec using  

(𝑼𝑼tec)2 = 2𝑬𝑬tec + 𝑰𝑰. (8) 

Here, 𝑰𝑰 is the identity for second-order tensors. The tensor 𝑹𝑹 in Eq. 7 is an orthogonal second-
order tensor. It cannot be obtained from 𝑬𝑬tec. Thus, it is calculated from the polar decomposition 
of the deformation gradient 𝑭𝑭 that corresponds to the displacements 𝒖𝒖𝑖𝑖 of the nodes within the 
element. Finally, 𝑭𝑭tec can be calculated using Eq. 7, and subsequently the viscous stress 𝝈𝝈visc can 
be obtained from Eq. 5 and Eq. 6 with 𝑭𝑭 = 𝑭𝑭tec. 

To account for rate-dependent material behavior within the solid-shell element, Eqs. 3 to 8 are 
applied separately as constitutive equations for the membrane and the bending behavior. In 
summary, Eq. 2 reads  

𝑺𝑺 = 𝑺𝑺M∗ �𝑬𝑬M, �̇�𝑬M� + 𝑺𝑺B∗ �𝑬𝑬B, �̇�𝑬B������������������
𝑺𝑺∗

+ 𝑺𝑺hg �𝑬𝑬c
hg� (9) 

for the considered viscoelastic material law. Note that the hourglass stabilization is modeled purely 
elastic and thus can be adopted from Schäfer et al. [13]. 

Estimation of timestep increment. The implementation in ABAQUS/EXPLICIT requires the 
definition of an approximation for the upper bound of the stable time increment Δ𝑡𝑡. Using the 
stability limit Δ𝑡𝑡c obtained from Courant, Friedrichs and Lewy [27] and the safety factor 𝛼𝛼 ∈ (0,1] 
the upper bound for Δ𝑡𝑡 is obtained by 

Δ𝑡𝑡 = αΔ𝑡𝑡c ≤ 𝛼𝛼 𝐿𝐿e
𝑐𝑐d

 , (10) 

where 𝐿𝐿e remarks the smallest geometric element dimension and 𝑐𝑐d the dilatational wave speed. 
The dilatational wave speed 𝑐𝑐d is dependent on the material law. Since solid-shell elements are 
thin structures, 𝐿𝐿e and subsequently Δ𝑡𝑡c are very small. For an isotropic elastic material law 𝑐𝑐d can 
be computed using [28]  

𝑐𝑐d = �𝜆𝜆+2𝜇𝜇
𝜌𝜌

 , (11) 

where 𝜆𝜆 and 𝜇𝜇 denote the Lamé constants and 𝜌𝜌 the mass density of an isotropic linear elastic 
material. However, in this work a viscoelastic material law is considered which is described by the 
Voigt-Kelvin model in Eq. 3. As this material is rate-dependent, it is not appropriate to assume 
that the corresponding dilatational wave speed 𝑐𝑐d from Eq. 11 is constant. Thus, it is possible that 
the calculated upper bound Δ𝑡𝑡 for the stable timestep is estimated too large which leads to unstable 
iteration schemes. Hence, it is beneficial to calculate an effective dilatational wave speed �̂�𝑐d which 
is dependent on resulting stresses 𝑺𝑺 and strains 𝑬𝑬. This enables the calculation of a stable time 
increment Δ𝑡𝑡 for arbitrary material laws. To calculate an effective dilatational wave speed �̂�𝑐d, the 
compression modulus 𝐾𝐾� and shear modulus �̂�𝜇 for an effective isotropic linear elastic material are 
calculated using the hyperelastic St. Venant-Kirchhoff model [24]  

3𝐾𝐾�(𝑬𝑬∘ ⋅ 𝑬𝑬∘) = 𝑺𝑺∘ ⋅ 𝑬𝑬∘  and  2�̂�𝜇(𝑬𝑬′ ⋅ 𝑬𝑬′) = 𝑺𝑺′ ⋅ 𝑬𝑬′. (12) 
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The operators (⋅)∘ and (⋅)′ denote the spherical and deviatoric parts of second-order tensors. 
Finally, the effective Lamé constants �̂�𝜆 and �̂�𝜇 can be obtained from 𝐾𝐾� and �̂�𝜇 in Eq. 12 and 
subsequently be substituted into Eq. 11 to calculate the effective dilatational wave speed �̂�𝑐d. To 
calculate the effective dilatational wave speed �̂�𝑐d for the solid-shell element, the stress 𝑺𝑺∗ = 𝑺𝑺M∗ +
𝑺𝑺B∗  and the Green-Lagrange strain 𝑬𝑬∗ = 𝑬𝑬M + 𝑬𝑬B are used.  
Note, that no effective material constants 𝐾𝐾� and �̂�𝜇 can be estimated from Eq. 12 if e.g., 𝑬𝑬∗ = 𝟎𝟎. 
Hence, the provided time step estimation is applied only when the estimated time step using Eq. 12 
is smaller than the time step derived from the purely elastic case. Otherwise, the estimated time 
step from the purely elastic case is applied. 
Numerical Study 
To demonstrate the rate-dependent material law based on Eq. 9, the solid-shell element is loaded 
with simple tensile tests and cantilever-bending tests. In both tests the beam has the length 𝑙𝑙 =
30 mm, the width 𝑏𝑏 = 5 mm and the thickness 𝑡𝑡 = 0.3 mm. In total, six elements are used to 
discretize the beam with only one element layer in thickness-direction 𝒆𝒆3. The geometry of the 
beam and the load cases are displayed in Fig. 1. The beams for both load cases are fixed on the 
left-hand side while the load is applied on the tip of the beam. The tensile test (Fig. 1a) is performed 
displacement-controlled. The maximum tension applied in the tensile test (Fig. 1a) is 𝑢𝑢M,max =
10 mm. The cantilever-bending test (Fig. 1b) is performed load-controlled. The maximum load 
applied in the cantilever-bending test (Fig. 1b) is 𝐹𝐹B,max = 2.5 mN. A smoothed amplitude is used 
to ramp-up the load-amplitude from zero to the maximum value for both coupon-tests. 

 
Figure 1: Geometries and load cases for the tensile test (a) and the cantilever test (b). 

Since this work focuses on the rate-dependent (viscous) part of the implemented material law, 
the elastic part of the material law (Eq. 4) is kept constant and equal for both the membrane and 
bending behavior throughout this work. It is described by the anisotropic stiffness tensor in Voigt 
notation 

ℂM = ℂB =

⎣
⎢
⎢
⎢
⎢
⎡
100 0 0 0 0 0

0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10⎦

⎥
⎥
⎥
⎥
⎤

 𝑽𝑽𝜉𝜉 ⊗ 𝑽𝑽𝜂𝜂 MPa. (12) 

where 𝑽𝑽𝜉𝜉  denote the basis dyads of the Voigt notation. 
Membrane-bending decoupling. To demonstrate that the membrane-bending decoupling still 

holds for the viscoelastic material law, simple tensile and cantilever tests are performed. For the 
elastic part, Schäfer et al. [13] showed that a membrane-bending decoupling is considered correctly 
with the presented solid-shell element. In the present work a similar approach is considered to 
demonstrate the membrane-bending decoupling for the viscous part of the viscoelastic material 
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law (Eq. 5). Virtual tensile and cantilever tests (Fig. 1) are performed with a constant velocity. The 
viscosities 𝜂𝜂M and 𝜂𝜂B (cf. Eq. 5) for the membrane and bending behavior, respectively, are both 
varied between a low viscosity 𝜂𝜂low = 0.1 MPa ⋅ s and a high viscosity 𝜂𝜂high = 1 MPa ⋅ s.  

 
Figure 2: Resulting virtual material response for different combinations of high and low 

viscosities for both the membrane and the bending behavior. 
The results for both the tensile tests and the cantilever tests are depicted in Fig. 2. The different 

combinations of high and low viscosities for the membrane and bending behavior are symbolized 
using different colors. Since the trajectories partially overlap, colored dots are used to distinguish 
the different curves. The results of the tensile test in Fig. 2 indicate that the reaction force in 
deformation direction undergoes changes solely when there is a variation in membrane viscosity 
𝜂𝜂M. A change of the bending viscosity 𝜂𝜂B does not affect the result of the tensile test. Analogously, 
the cantilever bending tests in Fig. 2 shows that the resulting trajectory is only dependent on the 
bending viscosity 𝜂𝜂B and a change of the membrane viscosity 𝜂𝜂M does not affect the result of the 
cantilever-bending test. In summary it can be concluded that the membrane-bending decoupling 
still holds for the viscous material behavior.  

Demonstration of the rate-dependent membrane behavior. To investigate the rate-dependency 
of the viscoelastic material law inside the membrane behavior, displacement-controlled tensile 
tests (Fig. 1a) are performed. The membrane viscosity is chosen equally for all tensile tests 𝜂𝜂M =
1 MPa ⋅ s. The bending viscosity is omitted for the tensile tests since the above results (cf. Fig. 2) 
indicated that the bending viscosity 𝜂𝜂B does not affect the result of the tensile test. The results of 
the viscoelastic tensile tests are compared with the purely elastic case where the viscous part of 
the membrane behavior is neglected (𝜂𝜂M = 0 MPa ⋅ s).  

The results of the tensile tests are displayed in Fig. 3. Here, the evolution of the reaction force 
𝑅𝑅1 in load direction are displayed over the displacement 𝑢𝑢M in load direction. The different colors 
represent different load times respectively load rates. The blue line represents the elastic case 
which is time independent. In the elastic case, the reaction force 𝑅𝑅1 increases monotonically with 
increasing displacement 𝑢𝑢M. Due to the geometric nonlinearity of the strain 𝑬𝑬, the trajectory of 𝑅𝑅1 
is not linear over 𝑢𝑢M. In case of the viscoelastic material law, the reaction force 𝑅𝑅1 increases with 
increasing deformation speed for a certain displacement 𝑢𝑢M. This is due to the larger deformation 
rate tensor 𝑫𝑫 for larger deformation rates. This shows that the general concept of viscoelasticity is 
captured accurately, and a rate-dependent material law can be displayed using the viscoelastic 
solid-shell element. The viscous curves do not follow a monotonic pattern. However, they 
approach the same reaction force 𝑅𝑅1 as observed in the elastic case. This is due to the smoothed 
load amplitude which starts and ends with very small deformation rates. Since the deformation 
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rate tensor 𝑫𝑫 nearly vanishes for 𝑢𝑢M ≈ 𝑢𝑢M,max the resulting reaction force is only caused by the 
elastic contribution of the material law. Therefore, it can be inferred that the variation in force 
between the elastic curve (blue) and the viscoelastic curves (red, green, orange) is solely attributed 
to viscoelastic properties. 

 
Figure 3: Resulting reaction forces for different deformation rates for the membrane behavior of 

the viscoelastic solid-shell element. 
Demonstration of the rate-dependent bending behavior. To investigate the rate-dependency of 

the viscoelastic material law of the bending behavior the cantilever-bending test is performed 
force-controlled (Fig. 1b). The bending viscosity is chosen equally for all cantilever-bending tests 
𝜂𝜂B = 1 MPa ⋅ s. The membrane viscosity is omitted for the bending tests since Fig. 2 showed that 
the membrane viscosity 𝜂𝜂M does not affect the result of the cantilever-bending test. The results of 
the viscoelastic cantilever-bending tests are compared with the purely elastic case. Here the 
viscous part of the bending behavior is also neglected (𝜂𝜂B = 0 MPa ⋅ s).  

The results of the different cantilever-tests are displayed in Fig. 4. Here, the curves of the 
applied bending force 𝐹𝐹B over the resulting displacement of the tip of the beam 𝑢𝑢3 are displayed. 
The different colors represent different load times respectively load speeds. The blue line 
represents the elastic case which is time independent. For elastic material behavior, the flattest 
curve is attained. Furthermore, an increase in load speed corresponds to a steeper trajectory of the 
bending force 𝐹𝐹B for the deformation 𝑢𝑢3. Conversely, an increased load speed demands more 
bending force 𝐹𝐹B for the same tip displacement 𝑢𝑢3. This is attributed to a greater deformation rate 
tensor 𝑫𝑫 for higher load speeds. Consequently, it can be deduced that the material's rate-dependent 
behavior can be captured under bending load.  

Note that none of the simulations in Fig. 4 reach a stationary state and all trajectories become 
nearly horizontal towards the end of the simulation time. For the viscous simulations (red, green, 
orange), the condition 𝑫𝑫 ≈ 𝟎𝟎 does not hold immediately at 𝐹𝐹B = 𝐹𝐹B,max because the bending test 
is performed force-controlled (Fig. 1b). Thus, the elastic equilibrium, where all trajectories meet 
in the same point, is only reached for large simulation times. Since the major rate-dependent effects 
of the viscoelastic bending behavior are observable using the initial slope of the trajectories, larger 
simulation times are not considered in this work.  
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Figure 4: Resulting displacements for different load rates for the bending behavior of the 

viscoelastic solid-shell element. 
Conclusion and outlook 
This work presents the enhancement of a locking-free linear elastic and anisotropic solid-shell 
element to a viscoelastic solid-shell element for a future application in thermoforming simulation 
of thermoplastic tapes. The considered solid-shell element is implemented as a user-element 
(VUEL) in ABAQUS/EXPLICIT. The Voigt-Kelvin model is used to model both the membrane and 
the bending behavior of the solid-shell element. It is shown that the presented approach can 
preserve the membrane-bending decoupling for the viscous stresses in coupon-tests. Thus, the 
viscoelastic material law can be applied to both the membrane and the bending behavior 
independently. An alternative estimation of the stable time-increment is presented which takes 
viscoelastic stresses into account. Numerical studies are carried out to demonstrate the viscoelastic 
material law in coupon-tests. The results show that the rate-dependent material behavior is working 
for both the membrane and the bending-part of the solid-shell element. Thus, the general approach 
of the viscoelastic material behavior within the solid-shell element is suitable as a further step 
addressing out-of-plane phenomena in thermoforming simulations with a solid-shell element. 

In this study only generic material properties were used to test the rate-dependent material laws. 
Future studies will extend the presented viscoelastic approach to more realistic material behavior 
to model the forming behavior of preimpregnated textile composites. A comparison of results of 
the conventional shell-elements and the solid-shell elements will be carried out to investigate the 
advantages of constitutive modeling the out-of-plane forming behavior. 
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