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Abstract. In the hot stamping process, elevated sheet temperatures and uneven die cooling 
contribute to insufficient thickness uniformity in the formed parts, leading to reduced forming 
efficiency and inducing severe thermo-mechanical fatigue in the die. To address these issues, a 
novel in-die liquid nitrogen (LN2) jet impingement cooling method is introduced to achieve a low 
and uniform initial holding temperature. The high-temperature steel sheet is initially cooled to 
slightly above the martensitic transition temperature through the application of an LN2 jet during 
the forming stage, followed by pressure-holding quenching. This method demonstrates remarkable 
outcomes, including a notable 74.19% reduction in holding time and a substantial 24.72% decrease 
in the maximum thinning rate. Furthermore, the maximum temperature difference between the 
upper and lower dies sees significant reductions of 34.57% and 25.84%, respectively. 
Introduction 
In the hot stamping process, the efficiency and quality of part formation depend significantly on 
the cooling performance of the die, specifically in terms of cooling rate and uniformity. 
Consequently, the top priority for optimizing part quality is the design and optimization of the die's 
cooling system. Various methods, including optimizing the dimensional parameters of cooling 
channels [1,2,3], designing a conformal cooling channel structure [4,5,6], selecting the materials 
of coolant [7,8], calculating flow parameters [9], new structure of cooling systems [10] and 
upgrading die materials [11,12], have been explored to enhance cooling system performance. 
However, these approaches primarily focus on optimizing the indirect cooling of traditional hot 
stamping, yielding relatively modest improvements.  

Furthermore, the spatial structure of the formed part often restricts material flow during the 
forming process, leading to local thinning and resulting in reduced contact pressure with the die 
or even the formation of gaps. This causes a significant decline in heat transfer performance, poor 
temperature uniformity, and the need for longer holding times to achieve the desired temperature 
reduction in the formed part [13,14]. Although improvements can be made through profile 
trimming, this increases manufacturing costs, and the aforementioned problems are likely to persist 
with increased wear. The continuous cycling of the hot stamping process also induces large cyclic 
changes in die temperature, potentially causing severe thermo-mechanical fatigue, increased wear, 
and even fractures [15]. This phenomenon significantly shortens the service life of the die. 

This paper introduces a novel method of in-die liquid nitrogen (LN2) jet impingement cooling 
for high-temperature ultra-high-strength steel. The method aims to increase the cooling rate of 
high-temperature steel plates, facilitating the creation of a fully martensitic structure, and to reduce 
the entry temperature of the plates into the mold, thereby shortening the holding time. Additionally, 
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in-die LN2 jet impingement cooling is employed for thermal management of the die, resulting in 
a reduction in the maximum temperature difference during cyclic changes in die temperature. This 
approach effectively mitigates thermo-mechanical fatigue, ultimately prolonging the service life 
of the die. 
Structure of LN2 Jet Impingement Cooling Die 
Control of Cooling Rate. The novel approach integrates an LN2 impingement cooling method with 
a hot stamping die by machining a 1 mm diameter deep hole on the die surface, establishing a 
connection to a channel inside the die. Fig. 1a schematically depicts the structure of LN2 jet 
impingement cooling combined with conventional hot stamping dies. The die, comprising an upper 
and lower component, incorporates uniformly distributed cooling channels on an isometric surface 
situated at a specific distance from the die surface. Jet holes, evenly distributed on the cooling 
channels, have their spacing adjusted to ensure uniform cooling. 

 
Fig. 1 Overview of (a) LN2 jet impingement cooling die model and (b) The simplified 2D model 

The manipulation of injection parameters for the jet, including jet velocity, is achieved by 
adjusting the pressure or flow rate at the inlet. In the hot stamping process, the upper die steadily 
advances toward the sheet at a consistent speed until a snug fit is achieved. While the die is in 
proximity to the sheet, the surface undergoes impingement cooling through an LN2 jet. Precise 
regulation of the sheet's cooling rate is achieved by altering both the speed and duration of the jet.  
Analysis of Heat Transfer Efficiency. In Fig. 1b, the employed Computational Fluid Dynamics 
(CFD) model is depicted. This model comprehensively characterizes the entire jet phenomenon, 
considering parameters such as jet velocity, jet height, turbulence, LN2 evaporation, and sheet heat 
transfer. To simulate the cooling process, a simplified 2D model of the LN2 jet impingement 
cooling was utilized. In this simulation, LN2, acting as the primary phase, impinges on the high-
temperature sheet's surface through a jet hole with a diameter (D).  

The finite element analysis software Ansys Fluent was employed to simulate the LN2 jet 
impingement process through a pressure-based transient analysis. The simulation utilized the 
widely adopted k-epsilon model with standard wall functions to accurately capture the interaction 
between the flow and the wall. This model, well-established in industrial flows, ensured a 
comprehensive representation of the LN2 jet impingement process. The use of Ansys Fluent 
facilitated a detailed analysis of heat transfer dynamics and fluid-wall interactions during the 
simulation, contributing to a thorough understanding of the process.  
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Fig. 2 IHTC transfer between Fluent and Abaqus 

Regulation of the Forming Process. Following the analysis of heat transfer efficiency, interfacial 
heat transfer coefficients (IHTC) for LN2 jet cooling under various parameters were obtained. The 
forming process was then simulated using Abaqus, incorporating the corresponding IHTC for 
different regions and time periods, as shown in Fig. 2.  

In the simulation of the forming process, the material of the sheet is 22MnB5, and its true stress-
strain curve is shown in Fig. 3a. The die was composed of eight-node thermally coupled hexahedral 
elements of type C3D8T, whereas the sheet was composed of four-node thermally coupled doubly 
curved thin shell elements of type S4RT utilized in the three-dimensional finite element model. 
Meshes were finer in the rounded corners of the die and the walls of the cooling channels to 
improve calculation efficiency, whereas meshes were coarser in the other locations. The upper die, 
lower die and sheet were meshed using the Abaqus/Explicit mesh module, which contained 11735, 
11070 and 3267 nodes as shown in Fig. 3b. 

 
Fig.3. (a) True stress-strain curve, (b) Meshing in forming models 

In contrast to conventional hot stamping, the closing process of jet impingement-cooled hot 
stamping involves the continuous presence of an LN2 jet, cooling the sheet until the die is fully 
fitted. Subsequently, as the jet hole becomes blocked, the cooling method transitions primarily to 
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indirect cooling. The hot stamping process using LN2 jet cooling and conventional cooling is 
shown in Fig. 4. This regulatory approach enhances the understanding of the dynamic cooling 
mechanisms during the forming process. In instances where gaps exist between the plate and the 
fully closed die, the LN2 can flow through these openings, enhancing local heat transfer. 

 
Fig. 4 Temperature paths for high-strength steel sheets under different cooling methods 

Results and Discussion 
The simplification of the CFD model assumes the presence of only LN2 at the injection inlet, 
excluding any nitrogen. Additionally, it presupposes that only LN2 is present at the injection holes, 
and the experimental environment consists of nitrogen. Relevant parameters employed in the 
model are detailed in Table 1. The initial state of liquid nitrogen at the inlet was determined based 
on its inherent properties, and the jet height was defined in relation to the gap between the mold 
and the sheet in the actual stamping process. Additionally, it was assumed that the sheet enters the 
die at a temperature of 800℃ after transfer and undergoes cooling to a temperature slightly above 
the martensitic transition temperature during the forming process. In other words, the sheet's 
temperature is within the range of 500-800℃.  
 

Table 1 CFD model parameters 

Parameters Value 
Inlet phase LN2 (no gas) at 76 [K] (-196 [℃]) 
LN2 jet velocity at inlet, Vinlet 5-20 [m/s] (uniform) 
Saturation temperature at 1 bar 77 [K] 
Jet hole diameter, D 1 [mm] 
Hole-target spacing, S 5-20 [mm] 
Distance from the intersection of jet centerline 
along the target wall, r 10 [mm] 

Temperature of the target wall 500-800 [℃] 
 
LN2 was injected onto the surface of the high-temperature sheet at a velocity of 20 m/s from 

the exit of the jet hole, dispersing along the surface to both sides at a velocity of approximately 
20.56 m/s after dispersion, as depicted in Fig. 5a. In the proximity of the contact between the center 
axis of the jet and the sheet, the jet velocity experiences a sharp decrease, creating a stagnation 
zone and resulting in high static pressure in this region, as illustrated in Fig. 5c. Fig. 5b provides 
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insight into the interaction between LN2 and a high-temperature sheet. At the center of the jet, 
there exists a very thin gas film between the LN2 and the sheet. With increasing distance from the 
axis of the jet center, the gas film thickness increases, impeding heat exchange and leading to a 
gradual decline in the heat transfer coefficient.  

 
 Fig.5 CFD simulation results for (a) Velocity cloud, (b) Volume fraction of LN2, (c) Pressure at 

the stagnation point and (d) Distribution of IHTC on the sheet surface  
Fig. 5d showcases IHTC on the sheet's surface at varying distances from the jet center axis. 

Interestingly, the maximum heat transfer coefficient occurs at 1.5 mm from the jet center, rather 
than at the intersection of the jet center axis and the sheet. This is attributed to a severe decrease 
in LN2 flow rate at the center, weakening the heat transfer effect, while the fluid velocity increases 
at 1.5 mm from the center of the jet, enhancing heat transfer efficiency. 

The interfacial heat transfer coefficient, calculated within a 5mm radius from the center of the 
jet, serves as a key parameter influenced by different combinations of height, jet velocity, and 
sheet surface temperature. Fig. 6a illustrates the IHTC corresponding to a jet inlet velocity of 20 
m/s, with variations in jet distance between 5-20 mm and sheet surface temperature ranging from 
500-800°C. The heat transfer coefficient exhibits an increasing trend with the augmentation of the 
jet distance, possibly because the increased distance causes the vortex created by the jet to be fully 
developed. This compels the diverted LN2 to approach the surface of the sheet, thereby enhancing 
heat transfer efficiency.Fig. 6b showcases interfacial heat transfer coefficient curves at a jet inlet 
velocity between 5-20 m/s and a sheet surface temperature between 500-800°C, with a fixed jet 
distance of 20 mm. The interfacial heat transfer coefficient increases gradually with the rise in jet 
velocity. The heightened jet velocity enhances the heat transfer between LN2 and the high-
temperature sheet surface. However, as the surface temperature of the sheet increases, the 
interfacial heat transfer coefficient gradually decreases. This decrease is attributed to the 
intensification of vaporization of LN2 due to the increase in superheat, and the generated nitrogen 
gas hindering heat transfer.  

(d)
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Fig. 6 Variation of IHTC with (a) different jet speeds and (b) different jet distances 

 
Fig. 7 Interfacial heat transfer coefficient under the combined effect of sheet temperature, jet 

distance, and jet velocity 
Fig. 7 displays the corresponding heat transfer coefficient profiles when employing a jet 

velocity ranging from 5-20 m/s, a jet distance spanning 0-20 mm, and a sheet surface temperature 
between 500-850°C throughout the forming process. These profiles serve as a guide for selecting 
the appropriate IHTC in Abaqus for forming simulations. 

Fig. 8a depicts the cloud view of the thickness distribution for the final formed part in the 10th 
hot stamping cycle under two distinct hot stamping processes. The thickness uniformity of formed 
parts using the LN2 jet impingement cooling method is significantly better than that achieved with 
conventional cooling methods. Selecting a jet velocity with a heat transfer coefficient of 6000 
W/(m2·℃) led to a rapid temperature drop of the sheet during the forming stage, plummeting from 
850℃ to 478℃ in just 0.25s, as illustrated in Fig. 8b.The sheet's cooling rate far surpasses the 
martensitic transformation cooling rate of 27°C/s, and no bainite or pearlite is formed during the 
forming process. Analyzing the temperature change of the sheet during the 10th hot stamping, it 
takes merely 3.1s from the initiation of the holding quench to the maximum sheet temperature 
dropping to 100°C. This represents a 74.19% reduction compared to the time required for 
conventional hot stamping with indirect water cooling.This remarkable efficiency is attributed to 
the jet impingement-cooled hot stamping process, featuring a lower initial sheet temperature and 
a larger temperature difference between the die and the sheet. Fig.8c illustrates the thickness 
variation in the formed part. In comparison with conventional hot stamping, the maximum thinning 
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rate is reduced by 24.72%, and the utilization of LN2 contributes to a shortened forming time by 
enhancing local cooling through the gap between the plate and the die. 

 
Fig. 8 Comparison of different cooling methods regarding (a) Temperature variation at the 

collection point (b) Thickness distribution (c) Thickness cloud  
Fig. 9 illustrates the temperature variation at the point where the highest temperature occurs on 

the die over ten forming cycles with different cooling methods. In all cases, the initial temperature 
of the die at the first hot stamping was 25°C. The LN2 jet impingement-cooled die in Fig. 9a 
stabilizes after 10 cycles, with the maximum temperature difference in the upper die reaching 
108.65°C and the maximum temperature difference in the lower die reaching 104.19°C in the 10th 
cycle.  

 
Fig. 9 Variation of die temperature over 10 stamping cycles using the method of (a) Jet cooling 

(b) Conventional cooling  
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On the other hand, the conventional hot stamping die in Fig. 9b tends to stabilize after 2 cycles. 
In the 10th cycle, the maximum temperature difference is 166.05°C for the upper die and 140.50°C 
for the lower die.Comparatively, the LN2 jet impingement cooling die achieves a reduction of 
34.57% and 25.84% in the maximum temperature difference of the upper and lower dies, 
respectively, compared to the conventional hot stamping die. This demonstrates the effectiveness 
of the LN2 jet impingement cooling die in reducing the maximum temperature difference and 
mitigating thermo-mechanical fatigue. 
Conclusion and future works 
A novel in-die LN2 injection impingement cooling forming method is proposed to enhance 
forming performance, efficiency, and extend die service life. The forming effect was simulated, 
verified, and compared with the conventional hot stamping method. This method effectively 
improves part forming quality and increases forming efficiency. The main conclusions are as 
follows: 

• The application of LN2 impingement cooling to regulate the sheet temperature during the 
forming process can significantly reduce the sheet thinning rate from 6.31% to 4.75%. This 
indicates a notable improvement in material formability. Further enhancements in 
formability are achievable with more sophisticated control of the jet parameters. 

• Jet impingement cooling during the forming stage contributes to a decrease in the initial 
temperature during the holding and quenching stage. This reduction results in a 74.19% 
decrease in holding time and an overall reduction in the hot stamping cycle by 52.35%. 

• The efficient heat transfer performance maintains the die at a consistently lower 
temperature throughout the process, reducing the temperature difference by 57.40 ℃ in the 
upper die and 36.31℃ in lower die, compared to conventional hot stamping. This leads to 
decreased thermo-mechanical fatigue of the die, effectively extending the service life of 
the die. 

In this paper, only numerical simulation is performed, and experimental validation should be 
carried out subsequently.As a future perspective, the advanced LN2 jet impingement cooling die 
is expected to feature a more intricate structure, necessitating more precise control of the cooling 
system for accurate management of zones and time intervals. The optimal initial holding 
temperature should be determined through experimental means to prevent a reduction in sheet 
formability and the need for excessive forming force.  
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