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Abstract. The paper proposes a methodology for determining the optimal L-DED parameters 
based on the minimum number planned of L-DED trials. A dataset compiled from planned L-DED 
experiments was used to train a machine learning model. The algorithm demonstrated a robust 
ability to predict the output metrics with notable accuracy and proposed a theoretical framework 
that modeled the complex relationships between the input variables and the resulting critical 
welding properties for AM. The application of the developed model and its comparison with 
conventional methods thus offers a methodical approach to determining the optimum process 
parameters in advance. This is a step towards the development and production of additively 
manufactured components for future digital twin application in the aerospace industry. 
Introduction 
The sustained development of additive manufacturing (AM) technologies such as laser directed 
energy deposition (L-DED) has evolved significantly, promoting extensive research into the 
improvement of processes and materials. Production of functionally graded materials, tool 
industry, repair and maintenance, medical implants, and production of aerospace parts are some of 
the applications of the L-DED process [1]. To achieve a deposition, a laser heat source has to 
provide sufficient energy to melt the substrate and the powder simultaneously in this process. 
Traditionally, the width, height, and penetration depth of weld beads have been used as essential 
metrics to evaluate the overall strength and quality of 3D parts made using AM [2]. The laser 
power, travel speed, powder feed rate, hatch distance, z-axis distance, and combination of these 
parameters are crucial to identify the geometry of the deposition with sufficient heat input (HI) in 
AM with L-DED. Considering these parameters and their combinations, the high precision and 
complexity of the L-DED process require highly efficient and accurate use of optimization 
techniques to achieve identified deposition such as artificial neural network (ANN) and machine 
learning (ML) methods. However, small datasets often make it difficult for learning algorithms to 
achieve accurate predictions, and an oversampling technique is needed to overcome this problem 
in ANN and ML [3]. ML provides higher accurate results than ANN for a limited training dataset 
[4]. New methodologies are required to decrease experimental costs and the number of datasets to 
store and process it. Therefore, the effectiveness of the experimental design to generate high 
quality datasets is important. Central composite design (CDD) and response surface methodology 
(RSM) are often used to design the experiment matrix in the weld process involving the lowest 
possible number of experiments [2]. Yi et al [4] discussed the use of ML with small datasets for 
wear prediction in AM. Zhu et al [5] applied ML with a small dataset for the inspection of surface 
morphology in DED. Xiong et al [6] used ANN with a small dataset to predict the bead geometry 
of GMAW. 
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Although there are some reports on DED concerning process dynamics, materials, and test 
planning, only a few of them focus on process or quality optimization involving a small dataset 
ML approach from the initial to the final product [2]. In this study, process parameter optimization 
is performed and compared using a small dataset applying statistical methods, ML, and a hybrid 
approach, which is a combination of these methods. Additive manufacturing was carried out with 
the optimized data and the final product was manufactured for the aerospace industry. 
Material and Methods 
The used material was spherical powder made of 316L (1.4404) with a grain size of 45 - 90 µm. 
The substrate plate made of the austenitic CrNi material 1.4301 had the dimensions 100 X 100 X 
10 mm and was free of oxide layers.  

A LUNOVU e-LMD system was used for the L-DED process. The L-DED system consisted of 
a 2.5 kW solid-state laser source, a coaxial nozzle with corresponding powder feed, 5-axis 
kinematics and a line scanner (Figure 1). The laser wavelength and spot diameter were 
960 – 1080 nm and 1.6 mm respectively. Argon (99.998%) with a volume flow of 12 l/min was 
used as the shielding gas. The volume flow of the powder carrier gas was 3 l/min. The distance 
between the substrate and the nozzle was 13 mm in order to focus the laser and the powder on the 
molten pool. Rhino and LunoCAM slicer were used for computer aided design (CAD) and 
computer aided manufacture (CAM). 

 
Figure 1. Labelled photograph of the L-DED system which was used to produce the samples 

characterises in this work. 
Figure 2 shows the steps involved in optimizing the welding parameters for AM. The laser 

power, travel speed, and powder flow rate of 1.4404 material were investigated for a single layer 
related to weld width, weld height, aspect ratio (Weld width/Weld height), and dilution (100 * 
Penetration Area / (Penetration Area + Weld Bead Area)). The penetration area is the weld 
deposition area below the surface of the substrate and the weld bead area is the deposition area 
above the surface of the substrate. Subsequently, the optimized single weld parameters were 
adapted first coating with different hatch distances and AM with optimization of z-axis distance. 

 
Figure 2. Optimization steps of the additive manufacturing. 

A full factorial 2³ (three factors with the two levels) central composite design with an axial point 
was used to produce the test matrix to optimize a single weld bead (Table 1). This design was 
augmented with an axial point (α), which is a strategically placed value at a specific distance ratio 
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from the center of the design space, to enhance the test matrix. The axial point 1.215 was used in 
order not to exceed the boundary conditions required for weld bead formation. Response surface 
regression method as a statistical method with Minitab Statistical software was utilized to analyze 
and optimize the process conditions. Regression learner with neural networks (NN) and Gaussian 
process regression (GPR) approaches as a supervised machine learning method were used with 
MATLAB R2021b software. As a nonparametric Bayesian method, GPR was developed using 
Gaussian probability distribution and it is particularly suitable for small amounts of data sets. The 
neural network used was a bi-layered fitting neural network. It can generalize an input-output 
relationship after training the data [7]. For machine learning, the training dataset in the central 
composite design was used as in the response surface method. The number of samples fabricated 
and results used for the training of the predictive algorithms consisted of 18 trials. The machine 
learning system was tested with an external dataset, which consist of 12 trials. Due to the small 
amount of data sets the 4-fold cross validation was chosen. The criteria for determining the 
discontinuities of the optimum welding parameters for a single weld bead were considered by DIN 
EN ISO 13919-1. 

Table 1. Design of experiment of the single weld bead. 

Parameters Low Level Central Point High Level 
Laser Power, W 500 1000 1500 
Speed, mm/min 500 1000 1500 
Powder Flow, g/min 5 10 15 

 
Axial point (α):1.215 
The evaluated dimensions of the weld are shown in Figure 2. The aspect ratio is in the acceptable 
range between 3 - 5. The accuracy of the weld was measured with a Lunovu linear laser scanner 
and a Keyence VK-X1000 laser scanner. The optimal dilution is between 2% - 15%, preferably 
between 5%-10% [8]. 

The weld width is a key parameter to transfer the technology to the coating application due to 
hatch distance. Therefore, the one factor at a time (OFAT) method with three levels was used for 
the coating optimization. After the coating, the two types of scanning strategy (Figure 3) were 
carried out and then the z-axis distance was determined. 

 
Figure 3. Bidirectional and scaling scanning strategy for additive manufacturing. 

In Figure 4, the diagram shows the workflow in additive manufacturing, starting with the 
creation of a 3D model using CAD. This model is subsequently used to build manufacturing 
instructions through CAM with the optimized single weld parameters. The component was 
manufactured in the additive manufacturing stage with optimization of the hatch distance and z-
axis distance as well as scanning strategy, followed by digitalization and evaluation of the 
component surface using a 3D scanning and metrology tool (ATOS-GOM Metronome System) to 
compare the manufactured product with the original CAD design for accuracy. After digitalization 
and evaluation of the AM part, the CAM values were optimized to achieve high accuracy near-net 
shape part. The final stage was the production of the final product and an iterative optimization 
process was applied to refine and improve the result. 
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Figure 4. Rapid prototyping workflow of the additive manufacturing component in this study. 

Analysis of as-deposited specimen 
The samples were cut with a cutting machine. The cut sample was ground on silicon carbide 
grinding papers with grit sizes from 120 to 2500, polished using three steps of diamond suspension 
(6 µm, 3 µm, and 1 µm), and oxide polished (0.05 µm silica solution, Struers OP-S Suspension). 
The Digital Microscope (DM) VHX-7000 (Keyence Deutschland GmbH) was used to investigate 
the presence, weld bead geometry, and dilution of the cross section of it. 
Results and discussion 
Optimization of the Single Weld Bead 
Weld width, weld height, aspect ratio, and dilution were optimized concerning laser power, travel 
speed, and powder flow rate. Response surface and machine learning methods were used for each 
output to optimize weld bead geometry. 
 
Response Surface Method 
The regression analysis carried out for the parameters of the L-DED process shows a robust model 
with a coefficient of determination (Table 2). A high value of R-squared and low value of standard 
error (S), mean squared error (MSE), and mean absolute error (MAE) indicate that the model can 
explain a significant proportion of the variability and high predictive capabilities. According to 
Minitab, R²(adj) is the percentage of variation in the response that was explained by the model, 
adjusted for the number of predictors in the model relative to the number of observations. R²(pred) 
was calculated using a formula equivalent to systematically removing each observation from the 
dataset, estimating the regression equation, and determining how accurately the model predicted 
the removed observation. 

The equation of the weld width, weld height, aspect ratio, and dilution and their process window 
related to laser power, travel speed, and powder flow are shown in Equation (1) – Equation (4) and 
Figure 5, respectively. Equations exhibit a positive trended relationship with the laser power for 
the weld width, weld height, and dilution, and a negative trended relationship with aspect ratio. 
An increase in laser power leads to an increase in weld width, weld height, and unlikely, an 
increase in aspect ratio and dilution due to high heat input resulting in a higher melting rate. 

Travel speed has a negative trend with weld width, and weld height and a positive trend with 
aspect ratio and dilution. High travel speed causes less heat input as well as powder feed on the 
substrate. Therefore, the weld with and height both decrease. The decreasing rate of the weld width 
is higher than to weld height, thus, the aspect ratio increases. However, dilution has a more 
complex relation in Figure 5. Due to this complex relation, Table 2 shows poor values of R², MSE, 
and MAE for dilution. On one hand, reducing the heat input per unit length causes decreasing the 
penetration area with reducing welding speed, on the other hand, less powder material per unit 
length causes decreasing of the weld bead area. The combination of geometrical parameters 
ensures that the dilution increases and then decreases. 

In case increasing the powder feed rate, the weld height increases, however, the weld width 
decreases, slightly. This is because of a reduction in the unit heat required to melt large amount of 
powder which causes the low viscosity of melt pool and non-spread melt pool. Therefore, the 
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aspect ratio increases. Because of the high material transfer, the dilution decreases with the 
increase of the powder flow due to less heat transfer on the substrate. 

 

 
Figure 5 Process window of the laser power, travel speed, and powder flow rate concerning 

weld width (a), weld height (b), aspect ratio (c), and dilution (d) of the L-DED process. 
Table 2. Model summary of response surface method. 

Parameter S R² R² (adj) R² (pred) MSE Test MAE Test 
Weld width 0.0483008 99.16% 98.41% 93.15% 0.01289 0.0877 
Weld height 0.0330986 99.27% 98.62% 94.20% 0.03832 0.1824 
Aspect ratio 0.659615 96.90% 94.10% 65.57% 0.80002 0.7761 
Dilution 6.35228 95.81% 92.04% 68.66% 114.35455 8.9996 
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Weld Width = 0.885 + 0.002101 Laser Power - 0.000275 Travel Speed 
- 0.0266 Powder Flow - 0.000001 Laser Power*Laser Power  
+ 0.0000001 Travel Speed* Travel Speed 
- 0.000297 Powder Flow*Powder Flow + 0.0000001 Laser Power*Speed 
+ 0.000035 Laser Power*Powder - 0.000021 Travel Speed*Powder Flow 

 (1) 

Weld Height = 0.380 + 0.000667 Laser Power - 0.001204 Travel Speed  
+ 0.0608 Powder Flow - 0.000000 Laser Power*Laser Power  
+ 0.000001 Travel Speed*Travel Speed 
+ 0.000335 Powder Flow *Powder Flow  
- 0.0000001 Laser Power*Travel Speed 
+ 0.000004 Laser Power *Powder Flow 
- 0.000034 Travel Speed *Powder Flow 

 (2) 

Aspect Ratio = 3.90 - 0.00209 Laser Power + 0.01197 Travel Speed  
- 0.787 Powder Flow - 0.0000001 Laser Power *Laser Power  
- 0.000001 Travel Speed*Travel Speed  
+ 0.0288 Powder Flow *Powder Flow  
- 0.0000001 Laser Power *Travel Speed  
+ 0.000250 Laser Power*Powder Flow  
- 0.000519 Travel Speed *Powder Flow 

 (3) 

Dilution = -48.8 + 0.1232 Laser Power + 0.0147 Travel Speed  
+ 0.21 Powder Flow - 0.000028 Laser Power*Laser Power  
- 0.000011 Travel Speed * Travel Speed + 0.010 Powder* Powder Flow  
+ 0.000011 Laser Power* Travel Speed - 0.002661 Laser Power*Powder Flow  
+ 0.000105 Travel Speed * Powder Flow 

 (4) 

Machine Learning Optimization of Single Weld Bead 
By training the model using the dataset, it was observed that the most effective models for 
prediction of the input parameters the weld width and the weld height on the training and test set 
were the models generated using the GPR method (Figure 6 and Figure 7). 
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Figure 6. The training performance (a) and test (b) performance of the weld width prediction. 
In Figure 6 and Figure 7, the majority of the observations for both the training and test datasets 

are near the line of perfect prediction, suggesting that the model has a high degree of accuracy in 
the prediction of the weld bead width based on the given input parameters - laser power, welding 
speed, and powder feed rate (Table 3). At lower true response values, the model tends to predict 
slightly higher weld width and lower weld height than observed, while at higher true response 
values the predictions of the model are consistent. 

 
Figure 7. The training performance (a) and test (b) performance of the weld height prediction. 

The response scatter plots highlight the robust ability of the bilayered neural network model to 
predict aspect ratio and dilution (Figure 8 and Figure 9). 
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Figure 8. The training performance (a) and test (b) performance of the aspect ratio prediction. 

At lower true response values which is critical for AM with L-DED, the model tends to predict 
consistent dilution than observed, while at higher true response values the predictions of the model 
are slightly higher. 

 
Figure 9. The training performance (a) and test (b) performance of the dilution. 

Table 3. Training and test results of the machine learning models. 
Parameter RMSE 

Training/Test 
R² 

Training/Test 
MSE  

Training/Test 
MAE  

Training/Test 
Weld width  0.14015 / 0.11452 0.88 / 0.80 0.019642 / 0.11452 0.096801 / 0.091415 
Weld height 0.073121 / 0.045294 0.94 / 0.89 0.00053467 / 0.0020515 0.058013 / 0.033399 
Aspect ratio 1.8346/ 0.39856 0.72 / 0.79 3.3658 / 0.15885 1.5785 / 0.33145 
Dilution 10.404 / 5.1832 0.80 / 0.89 108.24 / 26.865 6.5527 / 3.3351 

 
Hybrid approach 
In the hybrid approach, randomly augmented data from the RSM, constituting 25% of training 
data, was integrated with experimental data. The combined dataset was then utilized for the 
training of machine learning. To test the algorithm, the same test dataset as machine learning was 
used. The result of the training and test model of the hybrid approach is shown in Table 4. 
Except for the weld width prediction, the hybrid model has a slightly lower performance in 
comparison to machine learning. 
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Table 4 Training and test results of the RSM-Machine learning hybrid approach. 
Parameter RMSE 

Training/Test 
R² 

Training/Test 
MSE  

Training/Test 
MAE  

Training/Test 
Weld width  0.09433/0.11472 0.94/0.80 0.008898/0.01316 0.059998/0.090264 
Weld height 0.10487/0.062279 0.87/0.80 0.010997/0.074023 0.074023/0.047107 
Aspect ratio 1.569/0.43455 0.66/0.75 2.4614/0.18883 0.75323/0.36265 
Dilution 10.93/7.5793 0.81/0.77 119.47/57.446 6.7143/6.428 

 
The parameters were optimized to achieve defect-free deposition with minimized dilution, 

causing minimized heat input. The chosen optimized input parameters by machine learning are for 
a lower response 650 W laser power, 500 mm/min travel speed, and 5 g/min powder flow which 
gives 1.628 mm weld width, 0.440 mm weld height, 3.70 aspect ratio and 2.1% dilution; for an 
upper response 750 W laser power, 500 mm/min travel speed and 5 g/min powder flow which 
gives 1.858 mm weld width, 0.514 mm weld height, 3.62 aspect ratio and 9.8% dilution. 

The optimization was performed by machine learning. To minimize the process complexity, the 
optimum parameter range was determined by adjusting only laser power. Table 5 and Figure 10 
show the optimized weld bead parameters and cross-section of the weld beads. As a lower 
response, a laser power with 650W, and an upper response a laser power with 750W were chosen. 
The travel speed of 500 mm/min and powder flow of 5g/min were remained constant. The powder 
efficiency of the 750W optimized parameters is 53%. 

 
Figure 10. Microscope image of optimized weld beads with (a) a lower response (650W) and (b) 

an upper response (750W) based on Table 5. 
Table 5. Optimized weld bead parameter with a lower response and upper response. 

Laser 
Power, W 

Speed, 
mm/min 

Powder 
Flow, g/min 

Width, 
mm 

Height, 
mm 

Aspect 
Ratio 

Dilution, 
% 

650 500 5 1.628 0.440 3.70 2.1 
750 500 5 1.858 0.514 3.62 9.8 

 
Determination of suitable Coating Parameters 
The coating application was carried out with 5 stringer weld tracks and optimized by lower 
response parameters due to consider lack of fusion between the tracks. By optimization of the 
coating with three different hatch distances, it was observed that a narrow hatch distance with 40% 
of the weld width causes lack of fusion between tracks. The reason for this, if the focus position is 
not maintained, the steep flanks of the tracks can cause the laser beam to be shadowed during side-
by-side welding with track overlap, which can result in bonding discontinues between adjacent 
tracks [9]. 50% and 60% hatch distances do not cause lack of fusion, however, the linearity of the 
surface of the cross-section between 1. track and 5. track is higher in 60% hatch distance than 50% 
(Figure 11). Therefore, the optimum hatch distance for coating is 60% of the weld width for coating 
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application. The average coating height of optimum hatch distance was measured as 0.74 mm 
which will be used for z axis optimization. 

 
Figure 11. Cross-sections of the coating with hatch distance of (a) 40%, (b) 50% and (c) 60% of 

the weld width. 
Optimization of Additive Manufacturing 
The optimization of additive manufacturing samples was performed as a basic geometry in the 
form of a cylinder/cube. Figure 12 represents the cross-section of the basic shaped additive 
manufacturing samples. They were manufactured using optimized parameters that included a laser 
power of 650W. Each layer was built with a 0.7 mm z-axis offset distance employing a scaled and 
bidirectional scanning strategy (Figure 12a, Figure 12b). Instead of the upper part, the bottom part 
of both samples exhibits lack of fusion same as coating section (Figure 11a). The reason for not 
occurrence of lack of fusion in the upper layers is the increase in penetration as a result of heat 
accumulation. Increasing the layer height to 0.8 mm and using a bidirectional scanning strategy 
produced no bonding defects in the cube sample. (Figure 12c). 

 
Figure 12.  Cross-section of the basic shaped additive manufacturing samples. (a) 0.7 mm z-axis 
for each layer with scaled scanning strategy, (b) 0.7 mm z-axis for each layer with bidirectional 

scanning strategy, and (c) 0.8 mm z-axis for each layer with bidirectional scanning strategy. 
Prototyping of the component 
Figure 13 illustrates the additive manufacturing of the component. The prototyping process began 
with a digital model of the desired object, typically designed with CAD. Geometric adjustments 
of CAD can be performed at this stage due to avoid some design problems such as overhang. As a 
next step, the CAD model was processed using CAM software to plan the toolpath and simulate it 
with the optimized parameters. The blue lines represent the path planning with layers of deposited 
material. The actual production was carried out using the L-DED process. The laser was used to 
create a melt pool on the substrate material where powder material is deposited. The laser traveled 
along the planned path, transforming the powder into a final solid structure layer by layer.  
Between the lower (650W) and upper (750W) response parameters with an average 0.8 mm Z axis 
offset distance were used. The laser power is gradually reduced at the upper layers to prevent 
overheating. 

The final product was machined using the CNC (Computer Numerical Control) milling process, 
a subtractive manufacturing process. The oversized material was removed from the additive 
manufactured near net-shaped sample using a cutting tool to achieve the desired shape and surface. 
The final product does not show any defects on the surface caused by porosity and lack of fusion. 
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Figure 13. Additive manufacturing of the component. 

Figure 14 demonstrates the digitalization and surface evaluation of the component. The color 
map indicates surface deviation from the targeted CAD part. The scale on the right displays the 
range of these deviations in millimeters. The red and blue areas identify the oversized and 
undersized dimensions, respectively. The green area identifies where the component dimensions 
are close to the design dimensions. The blue area should not appear. The minimum, maximum, 
and average surface deviation of the additive manufacturing and CAD parts are +0.1 mm, 
+3.28 mm, and +1.23 mm, respectively. Material consumption decreases for the final production 
as the average deviation decreases to zero. The final product was achieved by applying the milling 
process. 

 
Figure 14. Digitalization and surface evaluation of the component: a) Alignment of the scanned 

component with CAD, b) surface deviation of the scanned component. 
Conclusion 
This study demonstrates an L-DED approach from initial to final steps for rapid prototyping in 
additive manufacturing. The optimization part of the methodology has significantly improved the 
precision and prediction of welding parameters such as laser power, welding speed and powder 
flow with respect to critical output parameters such as weld bead width, height and dilution. RSM, 
machine learning and hybrid approaches were utilized and compared. The study focuses on 
determining optimal L-DED parameters with a minimum number of planned trials involving test 
data. The regression learner-based ML algorithm provides a robust ability with high R-squared 
and low MSE values to predict these output metrics with considerable accuracy compared to 
statistical approach and hybrid approach for test data. The prediction of dilution is less accurate 
than that of other factors, due to the highly complex behavior of dilution. Based on the optimized 
parameters, the appropriate coating with hatch distance of 60% of the weld bead was applied and 
subsequently additive manufacturing with a z-axis distance of 0.8 mm was performed. The 
evaluation of the near net-shaped part was carried out by digitization and the final product of the 
aerospace part was prototyped. This approach is a step towards developing rapid prototyping 
additive manufacturing for future digital twin applications by increasing the precision and reducing 
the complexity of the L-DED process for aerospace industry. 
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