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Abstract. This paper presents a methodology to establish a process-structure-property (PSP) 
relationship for the additive manufacturing (AM) of small AISI 316L parts, as might be used in 
coronary stent applications. The methodology includes a physically based process-structure model 
based on cellular automata (CA) for microstructure characterization and generation, coupled with 
crystal plasticity finite element (CPFE) structure-property modelling to predict the mechanical 
response of the AM part under tensile loading. The effect of AM process variables, such as laser 
power and scanning speed, are reflected in the PSP modelling through the thermal modelling of 
AM feeding into the CA model. The CA method is shown to be able to capture microstructure 
texture, which is key to anisotropic behavior of AM parts. The present study aims to (i) establish 
a practical link between CA and CPFE models and (ii) identify optimal process variables with 
respect to ductility. 
Introduction 
Metal additive manufacturing (AM) is revolutionizing the manufacturing industry through a layer-
by-layer built process, enabling highly complex, bespoke, and customizable designs, especially in 
biomedical application. However, the characteristic microstructures resulting from metal AM 
processes, including grain morphologies and texture distributions, as well as void distributions, for 
example, are quite different from those of more conventional manufacturing processes. These AM-
induced microstructures and defects in turn have a strong influence on resulting mechanical 
behavior. This can lead to undesirable and hard-to-predict mechanical properties [1].  

The texture associated with AM parts and the build direction have been shown to result in 
orientation-dependent and anisotropic mechanical properties, such as ductility and tensile strength 
[2,3]. This may be attributed to the directional and high cooling rates in powder bed fusion (PBF) 
and the epitaxial and directional solidification of cubic crystals (such as FCC for 316L stainless 
steel).  

It is difficult to predict the relationships between process variables and the mechanical response 
of the printed part or to design the process to achieve specific mechanical performance. 
Computational simulation is a possible methodology to help understand these relationships and 
thus the micro-mechanical characteristics of metal AM parts.  

The present work is focused on development of a physically based process-structure-property 
(PSP) methodology for powder bed fusion (PBF), to provide a better understanding of the effects 
of process variables, and hence facilitate improved process design to avoid detrimental defects and 
achieve specific mechanical response. 
In this study, a cellular automata (CA) process-structure model, for simulation of AM-induced 
microstructure for thin stainless-steel members [4], is sequentially coupled with a crystal plasticity 
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finite element (CPFE) structure-property model to predict mechanical response of the 
synthetically-generated CA microstructure-sensitive models under tensile loading. 
Methodology 
Cellular automata solidification growth model 
A single dendrite with a face-centered cubic (fcc) lattice structure is shown to grow with an 
octahedral grain morphology in an undercooled melt, in both experiments [5] and simulations [6]. 
<100> directions represent the half diagonals of the octahedron. All the diagonals of the 
octahedron are of the same length under uniform thermal conditions as shown in Fig. 1 (a). For a 
2D representation of the growth envelope, one of the <100> directions of the grain is assumed to 
be normal to the 2D simulation plane (Fig. 1 (b)) 

 

 

 

(a) (b) (c) 
Fig. 1 The growth envelope under uniform thermal conditions in (a) 3D and (b) 2D, (c) thermal 

gradient in y direction in 2D. 
The basic cellular automata (CA) algorithm for modelling solidification growth is described in 

terms of the growth of a single nucleus in a melt pool with uniform temperature distribution. The 
physical and thermal parameters are the same as those used in [7]. A rectangular domain of size 
𝐿𝐿𝑥𝑥 × 𝐿𝐿𝑦𝑦 is assumed in the 𝑥𝑥-𝑦𝑦 plane. The domain is divided into a grid of square cells of size Δ𝑥𝑥, 
resulting in 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 cells in the 𝑥𝑥 and 𝑦𝑦 directions, respectively. 𝑇𝑇𝑖𝑖𝑖𝑖 denotes the temperature of 
cell 𝑖𝑖𝑖𝑖 where 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑦𝑦} and 𝑖𝑖 ∈ {𝑖𝑖, … , 𝑛𝑛𝑥𝑥}. The undercooling is defined as: 

Δ𝑇𝑇 = 𝑇𝑇𝑙𝑙𝑖𝑖𝑙𝑙 − 𝑇𝑇𝑖𝑖𝑖𝑖 (1) 

where 𝑇𝑇𝑙𝑙𝑖𝑖𝑙𝑙 is liquidus temperature. The initial state of the cells is set as liquid. An initial 
undercooling of 2K is assigned to all cells to initiate the growth of the nuclei [7]. A nucleus is 
assumed to be developed from the centre of cell 𝜂𝜂. The initial shape of the grain in 2D is a square 
where the [100] direction is rotated by an angle 𝜃𝜃 about the 𝑥𝑥-axis. The square engulfs the dendrite 
main trunks and arms. The size of the square depends on speed of the dendrite tip, 𝑣𝑣𝑡𝑡𝑖𝑖𝑡𝑡, which 
itself is a function of local undercooling, Δ𝑇𝑇. The following relationship is proposed by Kurz et al. 
[8] between 𝑣𝑣𝑡𝑡𝑖𝑖𝑡𝑡 and Δ𝑇𝑇: 

𝑣𝑣𝑡𝑡𝑖𝑖𝑡𝑡 = 𝐴𝐴(Δ𝑇𝑇)2 (2) 

where A is a material dependent constant. The half size of the growth square of the nucleus centered 
on cell 𝜂𝜂 (see Fig. 2 (a)) at time 𝑡𝑡 can be calculated from Eq. (3) or Eq. (4), as below: 

𝐿𝐿𝜂𝜂𝑡𝑡 =
1
√2

� 𝑣𝑣�𝛥𝛥𝑇𝑇𝜂𝜂(𝜏𝜏)�.𝑑𝑑𝜏𝜏
𝑡𝑡

𝑡𝑡0
 (3) 
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𝐿𝐿𝜂𝜂𝑡𝑡 =
1
√2

� 𝑣𝑣�𝛥𝛥𝑇𝑇𝜂𝜂(𝜏𝜏)� ∙ 𝛥𝛥𝜏𝜏
𝑡𝑡

𝜏𝜏=𝑡𝑡0

 (4) 

New cells are captured as soon as their centre is engulfed by a growth square. The time 
increment at which four neighbors of cell 𝜂𝜂, one highlighted as cell 𝜇𝜇 for further explanation, are 
captured as shown in Fig. 2 (b). Once a new cell is captured, it inherits the properties of the parent 
cell, i.e., the grain identification number (grain ID) and misorientation, and its state changes liquid 
to solid. So far, the centre of the growth square is fixed at its initial location, and it keeps growing 
as long as Δ𝑇𝑇 > 0, resulting into two issues: (i) the growth square becomes so large that it captures 
cells that should have been captured by other grains, as in Fig. 2 (c), and (ii) failure to take into 
account the local undercooling as the growth square grows.   

 

 
 

 

(a) (b) (c) 
Fig. 2. The cell capturing mechanism in 2D CA: (a) the growth square, 𝑺𝑺𝜼𝜼𝒕𝒕 , of the nucleus placed 
on the centre of cell 𝜼𝜼 with a misorientation angle of 𝜽𝜽 and its half size, 𝑳𝑳𝜼𝜼𝒕𝒕 , shown, (b) the time 

increment at which the cell 𝝁𝝁 is captured by the growth square of cell 𝜼𝜼.  The new truncated 
decentred growth square for the newly captured cell 𝝁𝝁, with is half size of 𝑳𝑳𝝁𝝁𝒕𝒕  is shown as well 

(𝑺𝑺𝝁𝝁𝒕𝒕 ), and (c) capturing wrong cells by the yellow growth square when it keeps growing.  

To overcome this problem, the decentered square algorithm is introduced. Whenever a new cell 
is captured, a new growth square is defined for that cell with the following criteria: 

1. The new square is fully inside the parent square. 
2. A corner of the new square coincides with a corner of the parent square which is closest to 

the centre of the newly captured cell.  
3. The half size of the new square is calculated as below (considering the capture of cell 𝜇𝜇 as 

shown in Fig. 2 (b)): 

𝐿𝐿𝜇𝜇𝑡𝑡 =
1
2
�min�𝐿𝐿𝜇𝜇1𝑡𝑡  ,√2Δ𝑥𝑥� + min�𝐿𝐿𝜇𝜇2𝑡𝑡  ,√2Δ𝑥𝑥�� (5) 

where 𝐿𝐿𝜇𝜇1𝑡𝑡  and 𝐿𝐿𝜇𝜇2𝑡𝑡  are the distances of centre of cell 𝜇𝜇 from the two opposite faces of the parent 
square along the capturing face (the face that has captured cell 𝜇𝜇). The growth squares of cell 𝜂𝜂 at 
times 𝑡𝑡 and 𝑡𝑡 − 𝛿𝛿𝑡𝑡, and the growth square of the captured cell μ are shown in Fig. 2(b) as 𝑆𝑆𝜂𝜂𝑡𝑡 , 𝑆𝑆𝜂𝜂𝑡𝑡−𝛿𝛿𝑡𝑡, 
and 𝑆𝑆𝜇𝜇𝑡𝑡 , respectively. The newly defined growth squares will grow similarly in each time increment, 
except with the undercooling associated with their own cell. Once all cells in the Moore 
neighborhood [9] of a cell are captured, its growth square is deactivated. In the case that multiple 
squares try to capture a particular cell at the same time step, the first capture in the iteration order 
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takes precedence. In some cases, the square of the captured cell completely overlaps with the 
parent square; in such cases, the new square is deactivated for computational efficiency.  

Grain growth algorithm validation 
The CA model for the decentered square grain growth algorithm is validated against the analytical 
model [10] which, in turn, was validated against experiments [11]. A 10 mm × 10 mm square 
domain is considered with a cell size of Δ𝑥𝑥 = 5 × 10−5 m resulting in 4 × 104 cells. A nucleus is 
placed on the cell in the centre of the domain with a misorientation angle of 𝜃𝜃 = 30°. Three 
different thermal conditions are defined based on the work of Gandin et al. [10], including spatially 
isothermal cooling, static thermal field, and Bridgman condition with a fourth condition as static 
temperature for comparison, as listed in Table 1. A cooling rate of �̇�𝑇 = −0.1 Ks−1 and a thermal 
gradient of 𝐺𝐺 = 250 Km−1 in the Y-direction is used where needed. For all cases, the initial 
undercooling is 2K, and the time increment is 0.01s.   
 

Table 1. Different modes of thermal conditions for the simulation of growth of a single nucleus 
using decentered square algorithm. 

Mode 1:  
Spatially isothermal cooling 

Mode 2: 
Static thermal field 

Mode 3:  
Bridgman condition 

Mode 4:  
Static temperature 

𝐺𝐺 = 0.0 Km−1  
�̇�𝑇 = −0.1 Ks−1 

𝐺𝐺 = 250 Km−1(Y dir.) 
�̇�𝑇 = 0.0 Ks−1 

𝐺𝐺 = 250 Km−1(Y dir.) 
�̇�𝑇 = −0.1 Ks−1 

𝐺𝐺 = 0.0 Km−1  
�̇�𝑇 = 0.0 Ks−1 

The evolution of the grain boundary in the CA decentered square algorithm is visualized with 
1 s time intervals for all thermal modes listed in Table 1 in Fig. 3 (a-d). The first three modes 
match perfectly with the analytical results [10], while the fourth mode is also a consistent result. 
For spatially isothermal cooling, the grain grows uniformly, and the growth rate increases over 
time as the undercooling increases (see Fig. 3(a)). The static thermal field and Bridgman condition 
resulted in non-uniform grain growth induced by the thermal gradient, 𝐺𝐺, where grains grow faster 
in the Bridgman condition because of the presence of cooling rate, �̇�𝑇, as in Fig. 3(b,c). The static 
temperature mode, on the other hand, produces uniform grain growth with constant growth rate 
(i.e., equally spaced grain boundaries in 1 s time intervals) as the only reason of grain growth in 
the initial undercooling (see Fig. 3(d)). The decentered square CA algorithm is developed using 
MATLAB.  

 

 
Fig. 3. The grain boundary of the growing grain associated with the single nucleus on the centre 

of the domain plotted at 1 s time intervals for different thermal conditions: (a) spatially 
isothermal cooling, (b) static thermal field, (c) Bridgman condition, and (d) static temperature.  
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To model the micro-mechanical behaviour of individual grains of 316L austenitic stainless 
steel, with a face-centered-cubic (FCC) crystal microstructure and 12 slip systems, single crystal 
plasticity theory was employed, based on the work of Hill [12], Rice [13], and Asaro [14]. This 
constitutive behavior has been implemented in a user-defined material (UMAT) for Abaqus 
[15,16] and is adopted here. More detailed description of the constitutive model is given in our 
previous work [4]. 
Results and discussion 
The proposed CA model when combined with the thermal histories of PBF for metal can produce 
microstructures that represent AM parts. As a preliminary study, a rectangular model representing 
a single track-like laser scan, with a thermal gradient in the y direction, is modelled, as depicted in 
Fig. 4(a) with grains y-color map according to the IPF color key. It is apparent from the model that 
the grains with <100> crystallographic orientations almost parallel to the y-axis (build direction) 
tend to grow faster and eliminate neighboring grains that are not suitable for fast growth (grains 
with green colors or with <101> direction parallel to the y-axis).  
 

 

 

(a) (b) 

        
(c)                                                    (d)                                                      (e) 

Fig. 4. CA microstructure model: (a) a sample CA microstructure with grains colored (in 
direction) according to (b) IPF color key, (c) jagged grain boundaries in a three grain CA 

growth model, and (d) the grain boundaries after smoothing.  

CA model optimization for meshing 
In a multi-grain CA model, the grain boundaries may exhibit artificial (synthetic) roughness, as 
illustrated in Fig. 4(d) for the case of three grains. To mitigate this artifice, a smoothing algorithm 
is employed to refine the grain boundaries. To achieve this, the grain identification number 
assigned to each cell is compared with the numbers attributed to the majority of its neighboring 
cells and changed accordingly. This process eliminates isolated cells and effectively smoothens 
the jagged grain boundaries, as depicted in Fig. 4(e).  

As part of the process-structure-property methodology, the CA microstructure should be 
converted into a suitable mesh for crystal plasticity finite element (CPFE) analysis. The pixels or 
cells (voxels in 3D) in the CA model can be converted into regular quadrilateral (hexahedral in 

0

2

4

IPF color key 
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3D) elements. However, this has two main drawbacks: (i) stepped grain boundaries (GBs) which 
are not appropriate for simulating phenomena like GB sliding, and (ii) a large number of elements 
due to the relatively small cell size required for CA growth modelling [17]. Alternatively, the CA 
microstructure model can be meshed using 2D triangular (or 3D tetrahedral) elements within the 
MATLAB code. For this purpose, GBs in the CA model are extracted for all grains (see Fig. 5(a)). 
Then, for each grain, the initial GB is rearranged to represent the correct connectivity order, 
creating a polygon for each grain. This polygon can be meshed straight away. But, since the GB 
polygons are comprised of the cell edges, the issue with the stepped grain boundaries persists and 
results in non-uniform mesh distribution with very small elements near the GBs as depicted in Fig. 
5(b). To rectify this problem, a Ramer-Douglas-Peucker (RDP) algorithm [18,19] is utilized to 
simplify the GBs. The triple points for each grain are used as the initial points to start the RDP 
algorithm. Fig. 5(c) shows the simplified GBs along with the initial ones for the same 10 grain CA 
microstructure model shown in Fig. 5(c). The significant improvement of the mesh quality using 
the simplified GBs as input is evident, not only near the GBs but also inside the grain, as illustrated 
in Fig. 5(d). 

 

 
 

(a) (b) 

 

 

(c) (d) 
Fig. 5. CA model optimization for FE meshing: (a) the initial grain boundaries (GB) of a CA 
model with 10 grains with a portion magnified to show the stepped grain boundaries, (b) the 
non-uniform mesh generated using the initial GBs with very small mesh close to GBs, (c) the 

simplified GBs using the RDP algorithm, and (d) the generated mesh using the simplified GBs. 

CPFE tensile analysis of CA model 
A tensile macroscopic strain of up to 50% has been applied to the microstructure produced with 
the CA model as shown Fig. 4(a) and the tensile response is analyzed using the CPFE material 
model. The strain contour plot of the deformed microstructure is depicted in Fig. 6. The FE model 
is constrained from the two ends and the upper and lower sides are unconstrained, mimicking 
miniscule components such as cardiovascular stent struts, resulting in free deformation along the 
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length of the model. Due to heterogeneity of crystallographic orientation, the deformation is also 
non-uniform (heterogeneous) with regions of localized strains and macroscopic shear band aligned 
at 45° of the tensile direction.  

 
Fig. 6. The CPFE strain contour plot of the CA microstructure model under 50% macroscopic 

tensile deformation.  
Conclusion 
A cellular automata process-structure methodology for grain growth was developed, simulating 
dendritic growth under different thermal conditions – suitable for PBF microstructure morphology 
and texture modelling; this was linked to CPFE for tensile structure-property simulation, with 50% 
macroscopic elongation applied to the CA-CPFE model, revealing localized deformation and shear 
bands. Future and ongoing work includes CA-CPFE sensitivity studies to understand process 
variable effects on AM part performance, continuing our recent work on PSP modelling of AM 
316L struts.  
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