
Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 2355-2363  https://doi.org/10.21741/9781644903131-259 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

2355 

Eigenstrain method in simulations of laser peen forming of  
curved surfaces  

POLTL Dominik1,a,*, TEJA SALA Siva2,b, KASHAEV Nikolai2,c and  
KLUSEMANN Benjamin1,2,d  

1 Institute of Production Technology and Systems, Leuphana University Lüneburg, Germany 
2 Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, Geesthacht, Germany 
a dominik.poeltl@leuphana.de, b siva.sala@hereon.de, c nikolai.kashaev@hereon.de, 

d benjamin.klusemann@leuphana.de 

Keywords: Finite Element Analysis, Laser Peen Forming, Eigenstrain, Bending, 
Curvature 

Abstract. The eigenstrain ansatz allows for the efficient simulation of large-scale applications of 
Laser Peen Forming (LPF) while being subject to geometric constraints. A setup to investigate the 
viability of the method for non-uniform curvature is proposed. A small-scale laser processing is 
simulated on cylinder shells of given curvature. Eigenstrains are determined in representative cells 
and mapped onto a second cylinder shell with different curvature to simulate a large-scale 
processing operation. The eigenstrains result in changes in local curvature. This is repeated for 
four curvatures. The resulting data is used to investigate the dependence of the induced curvature 
change on the origin geometry of the eigenstrains. A determined regression relation provides 
insight into the feasibility of the eigenstrain ansatz beyond its constrains.  
Introduction 
The titanium alloy Ti-6Al-4V offers the aerospace industry a material with a high strength to 
weight ratio and excellent high temperature stability. This makes it the most used titanium alloy, 
but poses some challenges due to its difficult formability [1]. Laser Shock Peening (LSP) and its 
adaption for small forming operations, Laser Peen Forming (LPF) offers a highly controllable 
processing method: A pulsed high-energy laser hits a specimen perpendicular to its surface in a 
repeated, structured manner, thus creating a peening pattern that consists of a high number of 
individual shots based on parameters such as the shot diameter, the overlap of consecutive shots 
as well as the dimensions of the peened region. Each individual laser pulse, with an energy density 
in the order of magnitude GW/cm² and a duration in the ns scale, generates a rapidly expanding 
plasma on specimen’s surface. This plasma in a water confined regime induces mechanical shock 
waves that propagate through the specimen, causing dynamic yielding and resulting in a plastic 
strain field [2], [3]. The induced local deformation leads to difference between initial and post-
processing curvature. 

For modelling of LPF, the direct simulation of a large number of peening shots is 
computationally very costly. An efficient shortcut for simulation of LPF is the use of the 
eigenstrain method, as presented by Hu and Grandhi [4]. Investigating laser peening of planar 
samples, Hu and Grandhi [4] used the periodicity of the in-plane plastic strain field to determine 
eigenstrains ε𝑝𝑝 in representative volumes. Eigenstrains are strains that persist in a specimen 
without external loading, e.g. thermal strains. The eigenstrains are associated with representative 
positions in a peening patch. Once determined in a small-scale simulation, the eigenstrains can be 
mapped onto a large-scale geometry whose peening pattern can be much bigger than on the small-
scale geometry. On this larger pattern, the eigenstrains ε𝑖𝑖𝑖𝑖 are introduced as anisotropic thermal 
expansion coefficients α𝑖𝑖𝑖𝑖 via  
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in a notation for cylindrical coordinates and Δ𝑇𝑇 =  1𝐾𝐾. The use of the ansatz is not exclusive to 
LPF, as Faucheux et al. [5] demonstrated it for shot peening. Keller et al. [6] used the eigenstrain 
ansatz to investigate the influence of LSP on fatigue crack propagation rate. Sala et al. [7] used the 
method to build a database of arbitrary peening patterns to train a neural network on the prediction 
of the pattern based on the deformation. However, on the use of eigenstrains on curved geometries, 
only few studies exist. For instance, Cai and Zhang [8] transformed the determined eigenstrains 
with respect to the normal to an arbitrarily curved surface. 

In this work, the term source is coined for the small-scale geometry that is the origin of the 
eigenstrains while the term target is coined for the large-scale geometry that is the destination of 
the eigenstrains. The main focus of this work will be the investigation of the influence of the 
difference of local curvature between the source and the target geometry. Other than a plane sheet, 
which trivially has the uniform curvature κ𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟 = 0 mm−1, only the cylinder shell features a 
uniform curvature: For a cylinder shell of outer radius 𝑟𝑟, the curvature is 

κ(𝑟𝑟) = 𝑟𝑟−1. (2) 

Simulation setup 
Specimen geometry. In this work, five discrete values of initial curvature are investigated, namely 
κ ∈ {10, 12, 14, 16, 20} ⋅ 10−3mm-1. This corresponds to five discrete radii of cylinder shell cuts. 
For each curvature, the source geometry is a 50 mm ×  50 mm ×  1 mm sheet bent to the 
corresponding outer radius. The target geometry is a 80 mm ×  20 mm ×  1 mm sheet that features 
the same radius. In order to describe the resulting strain fields via a common cylindrical coordinate 
system, all geometries are centered around the same origin and oriented along the same axis. As 
boundary conditions, the source geometry features one slim face with dimensions 50 mm× 1 mm 
with a prescribed encastre, as shown in Fig. 1. In contrast, the target geometry is fixed in the initial 
length of 10 mm. Figure 1 shows source and target geometries for two exemplary curvatures, 
including the corresponding boundary conditions. Using the commercial software package for 
Finite Element Method (FEM) simulations ABAQUS, continuous 8-node 3D elements with 
reduced integration and hourglass control (C3D8R) are used to mesh all geometries. For the source 
geometry, the peened region is meshed with and in-plane average element edge length of 0.1 mm. 
The target geometry features an in plane average element edge length of 0.2 mm. For both 
geometries, the thickness is discretized with 20 layers of elements, guaranteeing a fine enough 
discretization of the in-depth stress and strain fields. 

Peening pattern. In the center of each source geometry, a peening pattern consisting of 4×4 
laser shots is modelled. Each shot has a diameter of 3 mm. In order to model the angle of attack in 
industrial LSP systems, each circular spot is distorted to an ellipsis. The pattern exhibits an 
alternating row offset. Due to its structured generation, the pattern exhibits periodicity. This allows 
for the identification of representative cells. In this work, nine patches, namely one center patch 
(C) and eight wind rose patches (N, NE, E and so on), make up the set of the representative cells. 
The dimension and location of each cell is geometrically determined by the spot diameter, the 
overlap ratio and the alternating offset. Figure 3 a) features 16 shots and the induced origin and 
dimension of the representative cells. Figure 3 b) indicates the tessellation of the representative 
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cells on the surface of the target geometry: While corners stay unchanged in their dimension, edges 
get extended in one dimension and the center patch gets extended in two dimensions. 

 
Pulse modelling. For an individual laser pulse, the pressure 𝑝𝑝, acting on the surface can be 

expressed as 

𝑝𝑝 = 𝑝𝑝(𝑥𝑥, 𝑡𝑡), (3) 

where vector 𝒙𝒙 is a coordinate point on the surface and 𝑡𝑡 is the time. In this work, the spatial 
distribution of the pressure pulse is assumed uniform, leaving only the temporal evolution. To 
model the rapid pressure rise caused by the plasma expansion and the following pressure decay, 
two time parameters 𝑡𝑡amp and 𝑡𝑡70 were introduced, yielding  

𝑝𝑝�𝑡𝑡𝑟𝑟𝑎𝑎𝑝𝑝� = 𝑝𝑝𝑎𝑎𝑟𝑟𝑚𝑚 ⬚
𝑝𝑝(𝑡𝑡70) = 0.7 𝑝𝑝𝑎𝑎𝑟𝑟𝑚𝑚 ⬚
𝑝𝑝(𝑡𝑡) ∝ 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑡𝑡) for 𝑡𝑡 > 𝑡𝑡70.

 (4) 

Figure 1: Investigated geometries with boundary conditions; a) source geometry of lowest 
curvature, b) source geometry with highest curvature, c) target geometry with lowest curvature, 

d) target geometry with highest curvature. 
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The maximum pressure 𝑝𝑝𝑎𝑎𝑟𝑟𝑚𝑚 applied in all simulations is chosen such that dynamic yielding 
results in defomations of >1 mm at the specimen’s free tip. The exponential decay is truncated 
once 5% of the maximum pressure is reached. The timespan between reaching half maximum in 
the increasing phase and again in the decreasing phase is called full width half maximum (FWHM) 
and is well established in the literature. For the applied pulse it is 100 ns. Figure 2 shows the plot 
of this characteristic.  

Material Model. The constitutive modelling of Ti-6Al-4V must account for the extremely high 
strain rate during laser processing [9]. The Johnson-Cook material model with neglected 
temperature term models the viscoplastic material behavior [10]. The governing equation reads  

𝜎𝜎𝑦𝑦 = �𝐴𝐴𝐽𝐽𝐽𝐽 + 𝐵𝐵𝐽𝐽𝐽𝐽𝜀𝜀𝐵𝐵𝐽𝐽
𝑝𝑝𝐽𝐽𝐽𝐽� �1 + 𝐶𝐶𝐽𝐽𝐽𝐽 ln � �̇�𝜀p

�̇�𝜀p,0
��, (5) 

where ε𝑝𝑝 respective ε̇𝑝𝑝 is the equivalent plastic strain and its rate while 𝐴𝐴𝐽𝐽𝐽𝐽 , 𝐵𝐵𝐽𝐽𝐽𝐽, 𝐶𝐶𝐽𝐽𝐽𝐽, 𝑛𝑛𝐽𝐽𝐽𝐽  and 
ε̇𝑝𝑝,0 are material parameters, listed for Ti-6Al-4V in Table 1. [21] 

  

Figure 2: Temporal evolution of the pressure pulse. 

Figure 3: a) Representative cells with underlying peening pattern on the source geometry, 
b) tessellation with representative cells on the target geometry. 
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Table 1: Elastic and Johnson-Cook material parameters for Ti-6Al-4V [11] 

Density ρ, [g/cm³] Young’s modulus 𝐸𝐸, 
[MPa] 

Poisson’s ration ν, [-] Yield strength 𝐴𝐴𝐽𝐽𝐽𝐽 , 
[MPa] 

4.47 108500 0.33 728.7 

Strain hardening 
coefficient 𝐵𝐵𝐽𝐽𝐽𝐽, [MPa] 

Strain hardening 
exponent 𝑛𝑛𝐽𝐽𝐽𝐽 , [-] 

Strain rate hardening 
coefficient 𝐶𝐶𝐽𝐽𝐽𝐽, [-] 

Reference strain rate 
𝜀𝜀�̇�𝑝,0, [s-1] 

498.4 0.28 28∙10-3 1∙10-5 

 
Source simulation. The peening process is simulated using ABAQUS/Explicit. After each 

pressure pulse, a relaxation phase of 50 µs ensures the decay of transient behavior in the stress and 
strain fields. In all source simulations, the 16 spots are exposed to the pressure pulse in a spatial 
zig-zag order, meaning: The four shots of line 1 are irradiated from left to right; afterwards, the 
four shots of line 2 are irradiated from right to left; and so on. This is looped three times, resulting 
in three simulated peening sequences. After this explicit simulation, an implicit simulation is run 

Figure 4: Tangential plastic strains for a) center and corners of wind rose patches, b) edges of 
wind rose patches (scale of a) applies) and c) 4 exemplary layers of center patch (scale of a) 

applies); d) radial and tangential plastic strains through thickness for center patch. 
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to reach equilibrium. The limited number of shots result in no significant deflection and therefore 
no change in the curvature of the source geometry. 

 
Eigenstrain mapping. After the explicit and implicit simulation of the source geometry, the 

eigenstrains are determined in a mid-processing procedure. Each of the 9 representative cells is 
split into 20 in-depth slices, resulting a total of 180 slices. Based on the coordinate of the 
integration point, an element was assigned to one of the 180 slices or not. For all elements assigned 
to a certain slice, the plastic strain tensors were averaged using an element-volume-weighted 
averaging scheme. This resulted in one eigenstrain tensor for the whole slice and 180 eigenstrain 
tensors for the peening pattern. Figure 4 a) and b) show a stacking of the 20 in-depth cells for the 
9 windrose patches while c) tries to indicate the stacking of 20 cells by showing 4 exemplary cells. 
Figure 4 d) shows the profile of the radial as well as tangential plastic strains for the center patch 
over all 20 slices. On the target geometry, based on the larger-scale peening pattern, the origin and 
dimensions of the representative cells were calculated. All elements were assigned to a cell 
according to the coordinate of the integration point as depicted in Figure 3 b). The elements were 
assigned the averaged eigenstrain as an anisotropic thermal expansion coefficient according to 
Eq. 1. 

Target simulation. Once the eigenstrains have been introduced as thermal expansion 
coefficients, the simulation of a temperature increase of Δ𝑇𝑇 =  1𝐾𝐾 results in the deflection of the 
geometry as if a large number of individual shots in the large-scale peening pattern have been 
simulated. A curve 𝑐𝑐(𝑠𝑠) on the surface of the probe in the axial middle is determined based on data 
from the mesh nodes, where 𝑠𝑠 ∈ [0, … ,80] 𝑚𝑚𝑚𝑚 is the arc length of the curve starting from the 
encastre. In a cartesian coordinate system, the coordinates of the curve after deformation are 
parametrized as 𝑐𝑐(𝑠𝑠) = �𝑥𝑥(𝑠𝑠), 𝑧𝑧(𝑠𝑠)� with the two scalar functions 𝑥𝑥(𝑠𝑠) and 𝑧𝑧(𝑠𝑠). 

Cross-mapping and curvature calculation 
The eigenstrain ansatz presumes that the eigenstrains originate from a domain that has identical 
properties as the domain where they are applied, e.g. material, thickness, orientation, etc. In this 
work, this presumption is investigated by cross-mapping of eigenstrains from and onto geometries 
with different curvatures. The eigenstrains from each of the 5 source geometries can be mapped 
onto each of the 5 corresponding target geometries, resulting in 25 simulations. 

Let κ𝑠𝑠 be the initial curvature of the source geometry and κ𝑟𝑟 be the initial curvature of the target 
geometry, then the source curvature difference 

Δκ𝑠𝑠 = κ𝑟𝑟 − κ𝑠𝑠 (6) 

is defined as the curvature difference between the destination and origin of the eigenstrains. Figure 
5 a) depicts three examples for Δκ𝑠𝑠 less than, equal to and greater than zero. Once 𝑐𝑐(𝑠𝑠) is extracted 
from the simulation results, the two functions 𝑥𝑥(𝑠𝑠) and 𝑧𝑧(𝑠𝑠) enable the calculation of the local 
curvature κ(𝑠𝑠) as 

κ(𝑠𝑠) = �̇�𝑚(𝑠𝑠)�̈�𝑧(𝑠𝑠)−�̈�𝑚(𝑠𝑠)�̇�𝑧(𝑠𝑠)

(�̇�𝑚(𝑠𝑠)2 + �̇�𝑧(𝑠𝑠)2)
3
2

, (7) 

where discrete derivation is done via a central difference scheme. In terms of the arc length, the 
origin and dimension of the peening pattern is located at 𝑠𝑠 ∈ [17mm, … ,71mm]. In order to get 
one scalar curvature for the whole deflected surface, the curvature after deflection κ�𝑟𝑟 is calculated 
as average over all discrete values for the curvature in this interval. To finally describe a difference 
of curvature deflection, one last quantity needs to be introduced: Let κ�𝑟𝑟,0 be the curvature after 
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deflection for the case where the eigenstrains originated from a source geometry with the same 
curvature. Then the target curvature difference Δκ𝑟𝑟 as a function of Δκ𝑠𝑠 is defined as 

Δκ𝑟𝑟(Δκ𝑠𝑠) = κ�𝑟𝑟(Δκ𝑠𝑠) − κ�𝑟𝑟,0. (8) 

Figure 5 b) depicts the logic behind this definition. 

Results 
In order to find a relation between the mapping curvature difference between and the reached 
induced curvature difference, a regression of the data was determined. Two constrains for the 
regression were set: Δκ𝑟𝑟(0) = 0 and Δκ𝑟𝑟(ϵ) ≠ Δκ𝑟𝑟(−ϵ) for ϵ > 0. The linear regression of all data 
Δκ𝑟𝑟(Δκ𝑠𝑠) = 𝑚𝑚(Δκ𝑠𝑠) + 𝑏𝑏 with 𝑏𝑏 = 0 and a value of 𝑚𝑚 determined by a least squares error ansatz 
is chosen. This way, when the source curvature difference is zero, the target curvature difference 
is zero. The regression yields a value of the slope of 0 < 𝑚𝑚 < 1. Figure 6 plots the target curvature 
difference over the source curvature difference of the 25 simulations and the forced mean. The 
significant standard deviation of the data, indicated with the error bars, is due to the lack of 
preliminary smoothing before the discrete derivation and the following averaging process.  

Figure 5: a) The origins of the source curvature difference 𝛥𝛥𝜅𝜅𝑠𝑠 and the target curvature 
difference 𝛥𝛥𝜅𝜅𝑟𝑟. 

Figure 6: Target curvature difference against source curvature difference with forced mean 
relation. 
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The positive slope of the forced mean indicates the geometry dependence of the eigenstrains: 
For positive Δκ𝑠𝑠, the curvature change of the target geometry will be overstated; for negative Δκ𝑠𝑠, 
the curvature change of the target geometry will be understated. The value of 𝑚𝑚 <  1 indicates a 
tolerance of the eigenstrain ansatz for deviations in the eigenstrain. While the data points stem 
from discrete values of cylinder shells with uniform curvature, the continuous relation is able to 
improve LPF simulations of geometries with a non-uniform, continuous curvature profile. In the 
following, two ways, how knowledge of this relation gives an advantage when simulating small 
forming operations, are outlined: Assume, a small forming operation on target geometry with a 
non-uniform curvature distribution κ�𝑟𝑟(𝑠𝑠) should be simulated. If one eigenstrain tensor on a 
geometry with uniform curvature κ�𝑠𝑠 is known, then the relation gives an estimate on the maximal 
error caused by using the one known eigenstrain tensor, explicitly 

|max(𝛥𝛥𝜅𝜅𝑟𝑟)| = 𝑚𝑚 max
𝑠𝑠

(|κ�𝑟𝑟(𝑠𝑠) − κ�𝑠𝑠|) (9) 

Also, for a given target geometry with a non-uniform curvature distribution �̃�𝜅𝑟𝑟(𝑠𝑠), if the error 
in overall shape prediction needs to be limited to a given value, then the relation dictates the 
number of eigenstrain tensors 𝑛𝑛𝜀𝜀 needed to stay below a corresponding target curvature difference 
�̃�𝑒, namely 

𝑛𝑛ε = �
𝑎𝑎�max

𝑠𝑠
κ�𝑡𝑡(𝑠𝑠)−min

𝑠𝑠
κ�𝑡𝑡(𝑠𝑠)�

�̃�𝑒
� (10) 

The results are derived from geometries with a mono-directional curvature. No statement on 
geometries with multi-dimensional, non-trivial curvature can be made. 
Conclusions 
In this work, the simulation workflow using the eigenstrain ansatz was set up to model LSP 
processing of thin-walled Ti-6Al-4V specimen. For a smaller scale geometry, a small number of 
laser shots were simulated and the resulting eigenstrains were determined based on representative 
cells defined by the peening pattern. The eigenstrains were mapped onto a larger scale geometry 
featuring a large scale pattern. The introduced eigenstrains result in a global deflection curve, for 
which local curvatures and a global quantity as its proxy were calculated. The dependence of the 
induced curvature on the curvature of the origin of the eigenstrains was investigated. 

The results yield a linear relation between the source curvature difference and the target 
curvature difference. This hints at a geometry sensitivity of the eigenstrains contrary to current 
literature. A possible explanation is the area moment of inertia, which in this case features an 
additional term due to Steiner’s theorem. The higher the curvature of the geometry, the higher the 
axial area moment of inertia. This also yields: For identical radial load, a geometry with higher 
curvature will exhibit higher plastic strains than a geometry with lower curvature. For positive Δκ𝑠𝑠, 
mapped plastic strains that are lower than physically correct result in a deflection that is larger than 
physically correct, which corresponds to positive Δκ𝑟𝑟. 

The results can be applied to the simulation of small forming operations of complex shaped 
parts: A known eigenstrain tensor can be used in a maximally large volume or the number of 
eigenstrain tensors needed can be estimated. For both cases, the gain in efficiency by use of the 
eigenstrain ansatz, compared to direct simulation, can be maintained. 

Using the determined relation, future work of the authors will aim to investigate the simulation 
error that arises from the discretization of a target geometry with a continuous curvature in a given 
closed interval. A generalization to multidimensional curvature will also be tackled in upcoming 
work. 
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