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Abstract. Accurate prediction of the resultant geometry in sheet metal forming simulation is 
necessary to achieve zero-defect production. To quantify the effect of process parameters on the 
final geometry, numerical methods are used to simulate the process outputs for a given set of 
process variables. Finite element methods are employed in process optimization and design 
exploration. However, these computationally expensive models are unhelpful for process control 
applications. Surrogate models allowing fast prediction of resultant geometry or stress distribution 
can be plausible solutions. In the current study, we propose a sequential surrogate model to fit the 
stress field as a function of the process variable and the initial spatial coordinates. The framework 
is composed of two surrogate models. First, an artificial neural network (ANN) evaluates the 
displacement and the strain. Then, a second surrogate is employed to fit the stress using input strain 
and displacement. Here, ANN and physics-informed neural networks (PINN) are compared 
concerning prediction accuracy for the second surrogate model. The PINN is enhanced with the 
equilibrium equations. The developed method is demonstrated using a v-bending process. The 
results show that both surrogate models return good approximations, with ANN showing slightly 
better results.  
Introduction 
Computer-based simulations are widely employed in many engineering fields to characterize and 
design a process. Numerical solvers such as finite element (FE) simulations, computational fluid 
dynamics (CFD), and Monte-Carlo simulations are utilized to perform preliminary design 
exploration and subsequent reliability and maintenance operations during the process life. 
However, these tasks are computationally expensive and sometimes prohibitive due to the 
complexity of the problems. An alternative solution involves employing surrogate models to 
replace these methods. Surrogate models mimic the relation between inputs and outputs data 
collected from computer-based simulations. The built relation is then used to obtain fast and cheap 
predictions of unseen data. 

Surrogate models are also widely employed in manufacturing for process optimization. In 
process optimization, surrogate models deliver fast predictions to easily explore the design space 
and search for optimal process conditions. Similarly, in robust optimization, the features of the 
final product have to be guaranteed under uncertainties [8]. In global metamodeling, the aim is to 
build a globally accurate surrogate model within a reasonable computational time [9]. Global 
metamodels are challenging to achieve due to the curse of dimensionality, i.e., the number of 
sample points in the design space grows exponentially with the number of parameters. Therefore, 
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selecting the most suited surrogate models, together with a proper sampling plan, is essential to 
reach appropriate levels of accuracy.  

Artificial neural networks (ANN) are surrogate models categorized as regression models. In 
recent years, scientific interest in ANN has increased due to the rise of machine learning in many 
engineering fields. Several studies have utilized ANN in elastoplastic deformation problems such 
as sheet metal forming to obtain accurate predictions. In the work of El Mrabti et al. [1], the authors 
compare radial basis function (RBF), response surface methodology (RSM), Kriging, and ANN 
for failure predictions in a deep drawing process. Their results show that ANN performs better 
than other models in predicting thinning and rupture. Abbassi et al. [2] employed an ANN to 
predict the material parameters of the Gurson–Tvergaard–Needleman damage model for sheet 
metal forming. Ghaisari et al. [3] predicted the mechanical properties of ST14 steel using an ANN 
with nineteen inputs. The model evaluates acceptable mechanical properties on a test dataset. More 
generally, Gorji et al. [4] used a recurrent neural network (RNN), a class of neural networks that 
works with time series, to predict anisotropic plane stress plasticity for arbitrary loading paths. The 
authors proved that RNNs are well-suited for modeling plastic response through supervised 
learning.  

Physics-informed neural network (PINN) is a recently developed surrogate model class. PINNs 
are neural networks in which the loss function is augmented with governing equations of the 
system. In the article by Hoffer et al. [5], the authors compare several surrogate models (ANN, 
PINN, simple Kriging, support vector regression (SVR), K-nearest neighbor regressor (KNNR), 
and gradient boosting decision tree regressor (GBDTR)) for predicting the outputs of three 
different use cases using a perfect plasticity model. Haghighat et al. [6] proposed a PINN 
architecture applied to a linear elastic problem and a nonlinear perfectly plastic problem under the 
assumption of small deformations. Niu et al. [7] present a novel PINN framework for finite 
deformation elastoplasticity. A loading, unloading, and reloading cycle is applied to a plate with a 
hole in the center. The PINN accurately predicts displacement, plastic deformation, and stress 
state. 

In this article, we propose a surrogate model framework to predict the final (deformed) 
configuration and stress field under plastic deformation from the initial (undeformed) 
configuration. A comparison between ANN and PINN accuracy is carried out to describe the 
relationship between total strain and the stress field while satisfying the equilibrium equations in 
PINN. The data are obtained from the FE simulations of a V-bending process. The sample points 
are selected using an optimized Latin hypercube (OLH) to achieve a space-filling design of 
experiments (DOE). The hyperparameters of the surrogate models within the framework are tuned 
through an automatic tuner. Finally, we tested the proposed framework considering a third of the 
loading step. 
Artificial and Physics-Informed Neural Networks 
Artificial neural networks (ANN) are surrogate models used for classification and regression. Their 
core structure consists of one or more hidden layers and neurons. The neurons, i.e., the basic units 
of the layer, receive the outputs of the previous layer as inputs [10]. The activation function 𝜑𝜑 
applied to the neurons transforms the linear relation between layers into a nonlinear relation. 
Therefore, activation functions are essential to enforce the nonlinear relationship between inputs 
and outputs. The node responses 𝒛𝒛𝑙𝑙 for the layer 𝑙𝑙 with 𝑙𝑙 = {1,2, … , 𝐿𝐿} can be written as: 

𝒛𝒛𝑙𝑙 = 𝜑𝜑𝑙𝑙(𝒃𝒃𝑙𝑙 + 𝑾𝑾𝑙𝑙𝒛𝒛𝑙𝑙−1) (1) 

with 𝑾𝑾𝑙𝑙 and 𝒃𝒃𝑙𝑙 the weights matrix and bias vector of the 𝑙𝑙th layer, respectively, which are usually 
called trainable parameters 𝜽𝜽 (Eq. 3). Assuming that for 𝑙𝑙 = 0 the layer 𝒛𝒛0 is the input vector and 
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for 𝑙𝑙 = 𝐿𝐿 the layer 𝒛𝒛𝐿𝐿 is the output vector, the output layer can be written as the following 
composition of function: 

𝒛𝒛𝐿𝐿 = 𝒚𝒚� = 𝒛𝒛𝐿𝐿−1(𝒛𝒛𝐿𝐿−2(… (𝒛𝒛𝟏𝟏(𝒛𝒛𝟎𝟎) … ) (2) 

A cost function ℒ, as the average value of a loss ℓ, defines the performance of a surrogate model. 
Generally, regression models aim to minimize the cost function via iterative improvement of the 
trainable parameters (Eq. 3). In ANN, the derivative of the outputs with respect to the inputs is 
evaluated through the chain rule through the so-called backpropagation algorithm. The ANN 
exploits the backpropagation algorithm to search iteratively for the trainable parameter that 
minimizes the cost function.  

min
𝜽𝜽
ℒ(𝜽𝜽) = 1

𝑁𝑁
∑ ℓ(𝒚𝒚,𝒚𝒚�)𝑁𝑁
𝑗𝑗=1  (3) 

A common loss function is the quadratic loss ℓ2 which, substituted in Eq. 3, returns the mean 
squared error.  

Fig. 1. Schematic representation of the sequential surrogate model; the 𝒑𝒑 vector contains the 
process variables. In the grey boxes are the inputs and outputs of the first surrogate model, while 

in the white boxes are the inputs and outputs of the second surrogate model. 
Physics-informed neural networks (PINN) are a class of neural networks recently developed by 

Raissi et al. [11]. PINNs are addressed as surrogate models capable of solving partial differential 
equations, embedded in the loss function terms. These partial differential equations may involve 
initial conditions, boundary conditions, and governing equations. Thus, ANN and PINN share 
almost the same architecture and objective, i.e., minimizing the cost function.  

𝜽𝜽 = 𝑎𝑎𝑎𝑎𝑎𝑎
𝜽𝜽
𝑚𝑚𝑚𝑚𝑚𝑚 [𝜔𝜔𝐹𝐹ℒ𝐹𝐹(𝜽𝜽) + 𝜔𝜔𝐵𝐵ℒ𝐵𝐵(𝜽𝜽) + 𝜔𝜔𝑑𝑑ℒ𝑑𝑑(𝜽𝜽)] (4) 

where ℒ𝐹𝐹, ℒ𝐵𝐵, and ℒ𝑑𝑑 are the cost function concerning the governing equations, the boundary 
and/or initial conditions, and the target data respectively. The coefficients 𝜔𝜔𝐹𝐹, 𝜔𝜔𝐵𝐵, 𝜔𝜔𝑑𝑑 are 
corresponding multiplied weights. 
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In general, neural networks have a flexible architecture. Hyperparameters, such as the number 
of hidden layers, number of neurons, activation functions, optimizers, and so on, can be chosen 
arbitrarily. Nevertheless, the possible combinations of hyperparameters entail many appropriate 
architectures for one problem. Indeed, the hyperparameter tuning procedure involves time-
consuming trial and error methods and the operator experience [12]. Despite this, neural networks 
are widely studied in literature due to their ability to perform implicit sensitivity analysis, 
dimensionality reduction, and their universal approximator's property [13, 14]. 
Sequential surrogate models 
The proposed sequential surrogate (SS) model consists of two sequentially connected surrogate 
models for approximating the response of a finite-deformation elastoplastic problem (Fig. 1). The 
SS model takes the process variables and the reference configuration coordinates as inputs to 
generate a stress distribution as a response. Furthermore, the goal is to construct a global 
metamodel capable of delivering good approximation for unknown samples in the design space. 
To this end, picking an appropriate design of experiments (DOE) is crucial. The desired DOE must 
be spread uniformly over the entire domain utilizing the least amount of samples. Indeed, the last 
condition is necessary when the problem has many input variables to avoid the curse of 
dimensionality. Optimal Latin hypercube merges a Latin hypercube sampling with the maximin 
Morris-Mitchell criteria to achieve a space-filling DOE that involves a relatively small number of 
sample points [15]. Following the guidelines of Jin et al. [16], given six variables, the number of 
samples for a LH necessary to represent the design space is 112, i.e., 112 FE simulations. 

The first surrogate model is an ANN, entitled to evaluate the total strain and displacement. From 
now on, this surrogate will be referred to as ANN𝜀𝜀. The ANN𝜀𝜀 takes as inputs a set of process 
variables 𝒑𝒑 and the finite element integration point coordinates of the reference configuration. The 
latter are used to evaluate the total strain tensor and the displacement at the integration points at 
the end of the process. In the second segment of the SS model, a comparative study is conducted 
between ANN and PINN. The goal is to state which surrogate best imitates the relationship relating 
total strain and the stress tensor while respecting the strong form of the equilibrium equations. We 
will refer to the models with ANN𝜎𝜎 and PINN𝜎𝜎. The second surrogate model uses as inputs the 
same set of process variables used for the ANN𝜀𝜀, extended with the total strain components and 
the displacement at the integration points at the last increment. Furthermore, from our findings and 
as demonstrated by Haghighat et al. [6], better fitting of the stress components is achieved if the 
outputs have dedicated neural networks and, therefore, dedicated trainable parameters. From now 
on, we will refer to it as a multiple-network structure.  

As mentioned, the second surrogate evaluates the stress components through a relation that 
includes total strain and displacement. In PINN𝜎𝜎 the objective is to minimize the cost function as 
the sum of ℒ𝐹𝐹 and ℒ𝑑𝑑. The former takes into account the equilibrium equations, which, for a 2D 
case and under the assumption of plane strain, can be written as follows. 

ℒ = 𝜔𝜔𝑑𝑑|𝒚𝒚 − 𝒚𝒚�|2 + 𝜔𝜔𝐹𝐹 ��
𝜕𝜕𝜎𝜎11
𝜕𝜕𝑥𝑥1

+ 𝜕𝜕𝜎𝜎12
𝜕𝜕𝑥𝑥2

�
2

+ �𝜕𝜕𝜎𝜎12
𝜕𝜕𝑥𝑥1

+ 𝜕𝜕𝜎𝜎22
𝜕𝜕𝑥𝑥2

�
2
� (5) 

For this study, we use a 𝑘𝑘-fold cross-validation resampling technique to judge the quality of the 
surrogate models dictated by their accuracy. The dataset used to fit the surrogate is initially 
shuffled and then divided into 𝑘𝑘 subsets of equal dimensions, in which 𝑘𝑘 − 1 are used for training, 
and the remaining is used for validation. This procedure is performed for each possible and unique 
combination of the 𝑘𝑘 groups. Common values used for 𝑘𝑘 are 5, 10, and n, where the latter case 
represents the leave-one-out cross-validation strategy. A frequent mistake in ANNs is to assess the 
model generalization ability by monitoring the validation loss. Feature selection should not be 
performed on data outside the training set for model training, otherwise, it causes a leakage of 
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information and leads to excessively optimistic predictions. Therefore, training loss and validation 
loss are utilized to observe if the model is learning in training and if it is flexible enough to predict 
unseen data. In this regard, a test dataset, i.e., data never seen by the model during training, is built 
to evaluate the model's accuracy and generalization ability. It should be noted that the overall 
accuracy of the SS model is estimated through the accuracy in predicting the stress state given the 
prediction of the ANN𝜀𝜀 as input. Thus, in testing, the SS model predicts the strain and the stress 
components given the process parameters and the undeformed configuration.  
V-Bending process 
V- bending of metal sheets is characterized by large strain and plastic deformation. The proposed 
SS model is applied to a V-bending process inspired by the work of Wiebenga et al. [17]. In the 
article, the authors perform a sensitivity analysis to reduce the number of process variables and 
select those with the highest influence on the primary angle (𝛼𝛼). Consequentially, we choose 
thickness (𝑡𝑡), punch radius (𝑅𝑅𝑝𝑝), angle of the die (𝛼𝛼), and depth (𝐷𝐷) as input variables (see Fig. 2). 
In addition, we include the yield stress (𝜎𝜎𝑦𝑦) and the Young modulus (𝐸𝐸) of the sheet material as 
inputs due to their possible effect on the stress state. In Table 1, the process variables and the 
respective ranges are listed. It is worth mentioning that the angle 𝛼𝛼 is the same for both the punch 
and the die, and variation in yield stress will correspond to a shift of the stress-strain curve. 

Table 1. Process variables used as inputs for the SS model 

Process variables Range 

Thickness [mm] 0.49 ≤ 𝑡𝑡 ≤ 0.51 

Radius die [mm] 0.8 ≤ 𝑅𝑅𝑑𝑑 ≤ 1.2 

Angle [deg] 42.5 ≤ 𝛼𝛼 ≤ 47.25 

Depth [mm] 0.4 ≤ 𝐷𝐷 ≤ 0.6 

Young modulus [GPa] 190 ≤ 𝐸𝐸 ≤ 210  

Yield stress [MPa] 280 ≤ 𝜎𝜎𝑦𝑦 ≤ 300 

To run the FE simulations, the V-bending process is built in Marc Mentat 2022.1, assuming 
plane strain condition, isotropic hardening, and half of the geometry due to symmetry. The mesh 
counts 1800 quadrilateral linear elements, split 10 on the thickness and 180 along the length of the 
sheet. 
Hyperparameters tuning 
Tuning the hyperparameters of neural networks is an expensive task typically performed using 
trial and error methods, relying on the operator's expertise. Another approach involves automatic 
tuners to optimize an objective function based on testing several sets of hyperparameters. Thus, 
the hyperparameter searching algorithm is responsible for hyperparameter space exploration and 
computational efficiency. For example, a random search algorithm will test different 
hyperparameter sets randomly taken from the hyperparameter space. This method is highly 
inefficient when many hyperparameters are considered in the optimization process (curse of 
dimensionality). Bayesian optimization algorithms instead use a Gaussian process to sample 
successive points in the hyperparameter space.  
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Fig. 2. 2D representation of the V-bending process implemented in the FE solver. 
The Bayesian optimization searching algorithm (built in the KerasTuner library and available 

for Keras and Tensorflow) uses the upper confidence bound as an acquisition function. The 
hyperparameters selected to tune are the number of hidden layers between 2 and 5, the number of 
nodes 10 to 50, and the activation functions between rectifier (relu), hyperbolic tangent (tanh), and 
softplus. The automatic tuner runs the training process for 300 epochs for each hyperparameter 
set. To prevent overfitting, the searching algorithm aims to minimize the validation loss. 

In Fig. 3, five validation losses and the corresponding hyperparameter set, ranked according to 
the objective function, are depicted. It can be noticed that the three neural networks tend to prefer 
complex models (higher number of trainable parameters). Concerning the activation function, the 
ANN𝜀𝜀 shows better validation using the softplus, while both ANN𝜎𝜎 and PINN𝜎𝜎 prefer tanh. Based 
on Fig. 3a, the Bayesian optimization tuner ranks properly the hyperparameter sets for 
displacement and strain. None of the curves show that the model is overfitting and the lowest 
validation loss value is reached with hyperparameters set ranked as first. Conversely, in Fig. 3b, 
the automatic tuner suggests for ANN𝜎𝜎 the hyperparameter sets in which the validation loss starts 
overfitting (around 200 epochs), providing a ranking based only on the minimum value. Hence, 
the best result is the third option (4 layers, 42 nodes, and tanh), in which the validation loss 
smoothly decreases over the epochs. Analogously to ANN𝜎𝜎, the first-ranked validation loss of the 
PINN𝜎𝜎 is overfitting due to the model complexity (Fig. 3c). The second set in Fig. 3c, instead, is 
slowly decreasing and reaches a minimum comparable to the first. It is worth noticing that both 
chosen hyperparameter sets for the surrogates are similar. Therefore, for the comparative study, 
we set the number of layers to 4, the number of nodes to 40, and the activation function to tanh. 
Results and discussion 
The surrogate models are trained using the hyperparameter found with the Bayesian optimization 
tuner for 3000 epochs per 5 times due to the 5-fold cross-validation. The OLH is used to generate 
112 training simulations and 20 testing simulations, being careful not to have repeated sample 
points. To compare the results with the FE simulations, a mean field is evaluated. 

𝒚𝒚� = 1
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∑ 𝒚𝒚𝑖𝑖
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1  (6) 
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The error measure chosen is the mean absolute error (MAE) to exhibit the error in terms of 𝑀𝑀𝑀𝑀𝑎𝑎 
for stress. As expected, the ANN𝜀𝜀 approximates both displacement and strain (Fig. 4) well enough. 
Regarding the strain components, the highest error is located in the bending region under 
compression, which corresponds to the region in contact with the die, and in proximity of 𝑥𝑥 = 0 
(symmetry line). 

 

 

 

 

 

Fig. 3. Validation losses of the best five hyperparameter sets ranked by the automatic tuner: a) 
ANN𝜀𝜀 with single network structure, b) ANN𝜎𝜎 with multiple network structure, c) PINN𝜎𝜎 with 

multiple network structure. 

Fig. 5b and 5c depict the MAE of the stress components for ANN𝜎𝜎 and PINN𝜎𝜎 concerning the 
complete loading-unloading cycle. In the bending region and on the tip, the ANN𝜎𝜎 fits better the 
results than PINN𝜎𝜎. In particular close to the tip of the sheet is subject to forging, i.e., the tip is 
extruded onto the outside, due to extreme cases in which the distance between the die and punch 
walls is relatively small. Moreover, the predicted 𝜎𝜎12 using PINN𝜎𝜎 shows an error zone in the 
middle of the sheet in correspondence with the high gradient region observed in Fig. 5a. It is highly 
likely that the error in these areas is more emphasized due to the computation of the stress 
divergence. For example, the stress component 𝜎𝜎12 is derived two times with respect to 𝑥𝑥1 and 𝑥𝑥2 
for both equilibrium equations. Thus, the trainable parameters are forced to satisfy both relations. 
It is worth noting that 𝜎𝜎33 error is almost identical for both models as a consequence of the 
assumption that 𝜎𝜎13 = 𝜎𝜎23 = 0. In conclusion, ANN𝜀𝜀, ANN𝜎𝜎, and PINN𝜎𝜎 reproduce a 
distribution of the quantities similar to FEM, but the last two models are not capable of returning 
a good fitting of stress components, with MAE in the order of 30 − 50 𝑀𝑀𝑀𝑀𝑎𝑎.  

b) 

c) 

a) 
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Fig. 4. a) Mean field of the strain and b) mean absolute error of the strain for the complete 
loading-unloading cycle. 

 

 

 

Fig. 5. a) Mean field of the stress, b) mean absolute error of ANN𝜎𝜎, and c) mean absolute error 
PINN𝜎𝜎 for the loading-unloading cycle. 

a) 

c) 

b) 

b) 

a) 
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Processes subject to large and plastic deformation are known to be path-dependent. Predicting 
the stress field of a complete loading-unloading cycle means that information related to the history 
of the process is lost. Hence, it can be supposed that the surrogate models should lead to better 
fitting for small-time steps. Employing the same hyperparameters found with automatic tuners, the 
surrogates are trained using the information collected at a third of the loading step. Once more, a 
mean stress field is calculated to compare the predicted errors (Fig. 6a). In this case the predictions 
are plotted with respect to the maximum errors of ANN𝜎𝜎 due to a similar error range. This helps 
emphasize the areas prone to return worse predictions in PINN𝜎𝜎 than ANN𝜎𝜎. The evaluated MAE 
is almost ten to twenty times lower than the one calculated for the previous case. Both models 
show good generalization ability on the testing dataset, probably due to the low standard deviation 
among the test simulations. As expected, both models predict 𝜎𝜎33 similarly since it does not 
contribute to the equilibrium equation. Regarding the other components, the models exhibit an 
error concentration in correspondence of the contact point of the sheet with the punch and the die. 
The inferior performance of PINN𝜎𝜎 can be ascribed to the combination of high nonlinearity 
regions and the constraint on the model parameters enforced by the equilibrium equation. 
Nevertheless, the model returns a satisfactory fit if compared to ANN𝜎𝜎. 

Concerning the computational efficiency, the time needed to train the two surrogate models for 
the same number of epochs is almost the same. In PINN𝜎𝜎 the evaluation of the derivatives implies 
additional computations, which have a negligible impact on the overall efficiency. If time 
increments are taken into account, it is expected that the computational efficiency of the PINN𝜎𝜎 
will drop significantly. 

 

 

 

Fig. 6. a) Mean field of the stress, b) mean absolute error of ANN𝜎𝜎, and c) PINN𝜎𝜎 for a third of 
the loading step. 

Summary 
In this work, we proposed a sequential surrogate model framework to predict the stress field using 
process variables and initial spatial coordinates as inputs for the surrogate models. Simulations of 
a V-bending process are run via FE software to collect the necessary data to fit the surrogate 
models. We have shown the benefit of using automatic tuners as tools for the rapid evaluation of 
hyperparameters. A comparative study of ANN and PINN has been performed to evaluate their 
accuracy in predicting stress for the complete loading step and a third of it. In the former case, 
both surrogates did not fit satisfactorily through the data due to the loss of information related to 
the path dependency of the plasticity problem. Conversely, the surrogate models delivered better 
results for a smaller time step. ANN and PINN predictions have comparable results, despite the 

a) 

b) 

c) 
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latter showing an inappreciable higher error in the contact regions. Not to mention that PINN fits 
very well through data while satisfying the system governing equations. In conclusion, the 
subdivision of the loading step in smaller time steps should lead to better predictions. Therefore, 
adopting recurrent neural networks (RNN) for sequential data could help to consider path 
dependency and the evolution in time of the stress field. Besides, improving the PDE loss by taking 
into account time derivatives and constitutive equations may enhance the predictions of PINN. 
The former is the subject of our future work. 
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