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Abstract. This work focuses on predicting material parameters that describe the plastic behaviour 
of metallic sheets using the XGBoost machine learning algorithm, with a dual focus on the 
influence of data filtering and data noise. A dataset was populated with finite element simulation 
results of cruciform tensile tests, including strain field data during the test. Different noise levels 
were added to the strain-related features of the dataset; additionally, a feature importance study 
was carried out to identify and select the most relevant features of the dataset. A systematic 
analysis shows how feature noise and selection individually and simultaneously influence the 
predictive performance of machine learning models. The results show that feature selection will 
greatly accelerate model training, without losing its predictive performance. Also, adding noise to 
the features does not have significant impact on model performance, highlighting the robustness 
of the models. 
Introduction 
The essential role of numerical simulations in sheet metal forming processes for automotive and 
aerospace industries requires precise constitutive modeling. While existing strategies like Finite 
Element Model Updating (FEMU) and Virtual Fields Method (VFM) have been proposed, they 
present computational challenges [1, 2]. This study builds upon previous work by using machine 
learning, specifically the XGBoost algorithm, for material parameter identification. It extends prior 
work by employing machine learning, specifically the XGBoost algorithm, for material parameter 
identification. Initially, a dataset was generated using finite element simulation results from 
cruciform tensile tests. After preprocessing the dataset, the XGBoost algorithm was trained, and 
its performance in predicting material parameters was assessed. Subsequently, noise was 
introduced to the strain-related features to emulate scenarios like measurement-affecting errors in 
Digital Image Correlation (DIC), impacting computed strains via DIC. The  performance of the 
model was re-evaluated under these conditions. Finally, a feature analysis was conducted to assess 
the robustness of machine learning models, considering only the most important features; the 
influence of added noise to the strain-related important features was again assessed. 
Numerical simulation model 
This study employs the biaxial tensile test on a cruciform sample as the chosen mechanical test. 
The sample's geometry, previously designed in a previous work [3], allows for the generation of 
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heterogeneous stress and strain fields, encompassing a diverse range of stress and strain paths 
commonly encountered in sheet metal forming processes. The cruciform sample's geometry and 
dimensions in the sheet plane are presented in Fig. 1(a). The numerical simulation model considers 
only one quarter of the sample, as indicated by the grey region in Fig. 1(a), due to symmetries in 
boundary conditions, sample geometry, and material behaviour. The simulation assumes plane 
stress conditions and maintains a constant thickness of the sheet. Fig. 1(b) depicts the boundary 
conditions and finite element mesh employed in the numerical model. Symmetry boundary 
conditions were applied on the 0x and 0y axes (ux = uy = 0 mm). Additionally, displacement 
boundary conditions are applied to nodes at the ends of both arms of the sample to ensure equal 
displacements along both 0x and 0y axes (ux = uy = 2 mm). The numerical model uses a regular 
mesh consisting of 405 CPS4R elements with bilinear shape functions and reduced integration. 
All finite element analysis (FEA) simulations are carried out using the ABAQUS CAE software 
[4]. Each simulation consists of twenty equally spaced time-steps, during which the forces along 
the 0x and 0y directions and the strain field (εx, εy, and εxy) are obtained at each time-step. 
 

  

Fig. 1. Biaxial tensile test on a cruciform sample: (a) geometry and dimensions; (b) boundary 
conditions and finite element mesh. 

 
The constitutive model of the material assumes an isotropic elastic behavior, described by the 

Hooke’s law (with Young’s modulus E = 210 GPa and Poisson’s ratio v = 0.3), and an orthotropic 
plastic behavior, described by Hill’48 yield criterion with isotropic hardening described by Swift 
law under an associated flow rule. For plane stress conditions, the Hill’48 yield criterion can be 
written as follows: 

2 2 2 2
yy xx xx yy xy( ) ( ) 2 2F H G H H N Yσ σ σ σ τ+ + + − + = , (1) 

where F, G, H and N are anisotropy coefficients, σxx, σyy and τxy are the components of the Cauchy 
stress tensor in the material axes system of the metal sheet, and Y is the yield stress.  
The condition G+H=1 (i.e. σxx = Y) was assumed, which corresponds to the following relationships: 
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where r0, r45 and r90 are the Lankford coefficients obtained at 0º, 45º and 90º w.r.t. the rolling 
direction of the sheet, respectively. The Swift law describes the yield stress evolution during plastic 
deformation as follows: 
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where pε  is the equivalent plastic strain and σ0, K and n are material parameters. 

Dataset generation, model training and performance evaluation 
A total of 5733 sets of material parameters σ0, K, n, r0, r45 and r90 (i.e. samples) were generated 
using the Latin Hypercube Sampling (LHS) method. The input space the material parameters is: 
σ0 ∈ [120, 300] MPa, K ∈ [280, 700] MPa, n ∈ [0.10, 0.30]; r0, r45, r90 ∈ [0.600, 2.500]. The step 
size for σ0 and K is 1 MPa, for n is 0.01 and for r0, r45 and r90 is 0.001. Numerical simulations of 
the cruciform tensile test were performed for each sample while maintaining the same geometry, 
boundary conditions and elastic properties. Fig. 2 presents an example of numerical results of the 
cruciform test that were used to build the dataset [2]. 
 

(a) (b) 

 

  

(c) (d) 

    
Fig. 2. FEA results of the cruciform test (Y0=172MPa, n=0.16; K=486MPa; r0=2.38; r45=1.8; 

r90=1.06) [2]: (a) load vs. displacement along the 0x and 0y axes; strain fields (b) εxx, (c) εyy, and 
(d) εxy. The strain fields (εxx, εyy, and εxy) were obtained for ux=uy=2mm. 

Among the 5000 samples, 4671 exhibited no decrease in load during the simulation and were 
used for populating the dataset with synthetic data. Then, the dataset was randomly split into two 
subsets: a training set consisting of 4000 samples and a test set comprising 671 simulations. Each 
of the training and test sets consist of two matrices: a feature matrix and a target matrix. The feature 
matrix has shape nsamples×nfeatures, where nsamples is the total number of samples (i.e. numerical 
simulations) of the set and nfeatures is the total number of features (20 timesteps×(2 forces + 3 strain 
components × 405 elements) = 24340). The target matrix has shape nsamples×nparameters, where noutputs 
is the total number of model outputs (i.e. material parameters). The feature and target matrices of 
the training set are shaped 4000×24340 and 4000×6, respectively, while the feature and target 
matrices of the test set have shape 671×24340 and 671×6, respectively. Fig. 3 shows the 
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distribution patterns of the material parameters for the 4671 samples. Distributions associated with 
parameter n exhibit constrained coverage in the input space, a result of a too large step size (0.01). 
Also, samples featuring combinations of high values of σ0 and low values of K were excluded from 
the initial 5000 sets due to a observed decrease in load during the simulation; the same occurred 
for samples having σ0 values inbetween 188 and 190 MPa (only 1 sample having 190MPa was not 
excluded). 
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Fig. 3. Distribution patterns for material parameters in the training set (black markers) and test 
set (red markers). 

The training set was used for training the Extreme Gradient Boosting (XGBoost) regression 
algorithm; more details regarding the XGBoost algorithm can be found in [1, 5]. The 
hyperparameters of the XGBoost regression algorithm were kept as default, except for the learning 
rate (=0.02), max_depth (=15) and n_estimators (=1000) [5]. The test set was used for evaluating 
the performance of the ML model in predicting the material parameters. Fig. 4 presents the 
performance evaluation of the ML model. It compares the σ0, n and K, r0, r45 and r90 values 
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predicted by the ML model with the real values considered in the FEA simulations of the test set. 
Generally, the machine learning model demonstrates superior predictive performance, as 
evidenced by the R2 values presented in the figures. 

 
(a) (b) (c) 

   

(d) (e) (f) 

   

Fig. 4. Evaluation of constitutive parameter predictions for the test set: (a) σ0; (b) K; (c) n; (d) 
r0; (e) r45 and (f) r90. 

Performance evaluation with training set noise 
Now, random noise following a uniform distribution is added to all strain-related features of the 
training dataset. This aims to replicate scenarios such as measurement-affecting errors in Digital 
Image Correlation (DIC) that influence the strains computed via DIC. Four distinct noise levels 
were taken into account (± 0%, ± 5%, ± 10%, ± 20%), with a model trained and evaluated for each 
level. Table 1 presents the R² values for the constitutive parameters under different noise ranges 
added to the training set. As noise levels increase, the model's adaptability and predictive 
performance are evaluated. Increasing the level of noise does not significantly diminish the model's 
performance in predicting the constitutive parameters. In fact, incorporating noise during training 
can enhance the robustness of the model and can contribute to a reduction in generalization error. 
 

Table 1. Influence of added noise to the training set on model performance in predicting the 
material parameters. 

Noise level R2_σ0 R2_K R2_n R2_r0 R2_r45 R2_r90 
± 0% 0.9972 0.9925 0.9808 0.9991 0.9959 0.9989 
± 5% 0.9983 0.9917 0.9777 0.9992 0.9952 0.9991 
± 10% 0.9983 0.9913 0.9771 0.9991 0.9951 0.9988 
± 20% 0.9982 0.9908 0.9739 0.9981 0.9944 0.9980 
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An analysis of the overall relative error in predicting material parameters was carried out to 
assess the predictive performance of the models across the 671 simulations of the test set. This 
evaluation was performed using the Euclidean norm jδ , expressed as follows: 

2

, ,

1 ,

1(%) 100%
m

i j i j
j

i i j

x x
m x

δ
=

′ −
= ×  

 
∑ , i=1,…,m; j=1,…671, (4) 

where ,i jx′  and ,i jx  represent the estimated and true values of the i-th constitutive parameter in the 
j-th simulation in the testing set, and m is the total number of constitutive parameters to be 
identified (m=6). Fig. 5 presents jδ  as a function of the 671 simulations in the test set and 
compares the influence of noise added to the training set (± 0% vs. ± 20% added noise). In the case 
of the model trained on a noise-free training set, only 6 samples among the 671 exceed the 5% 
error threshold. However, for the model trained with ± 20% noise, only 11 samples exceed the 5% 
error threshold. These instances are minimal in comparison to the overall size of the test set, again 
highlighting the model's robustness in estimating material parameters even with added noise. 
 

(a) (b) 

  

Fig. 5. Relative error jδ  in the prediction of material parameters for the 671 samples of the test 
set: (a) model trained with a noise-free training set; (b) model trained with ± 20% added noise. 

Feature analysis and selection 
As the previous ML models have demonstrated robustness to noise, a question arises: how does 
the sensitivity of the models to noise in the training set evolve when the dataset undergoes a 
substantial reduction in the number of features? To tackle this question, a features analysis using 
Shapley Additive Explanations (SHAP) is performed [6], to provide insights into the impact of 
employing a reduced dataset containing only the most influential features for the models to 
estimate the material parameters. Fig. 6 presents the 20 most influential features to predict each of 
the 6 material parameters. Each force feature is labelled as “Force_direction_timestep” (direction 
can be “x”, or “y”; timestep ranges between 1 and 20), and each strain feature is labelled as 
“Strain_component_elementnumber_timestep” (component can be “x”, “y”, or “xy”; 
elementnumber ranges between 1 and 405 - see Fig. 1, and timestep ranges between 1 and 20). For 
example, according to Fig. 6 (a) and (b) the most influential features for predicting σ0 and K are 
the force along the y direction at the first and last timesteps, respectively (which is naturally 
expected). For the trained model, an increase in the magnitudes of these features corresponds to 
an increase in the predicted values of the parameters, highlighting a positive correlation between 
these input features and the predicted outcomes. The remaining features shown in Fig. 6 (a) and 
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(b) are mostly strain-related features, which present little influence for predicting σ0 and K. A 
similar analysis conducted for the remaining parameters reveals subtle insights that may not be 
immediately apparent. SHAP analysis contributes to a more comprehensive understanding of the 
relationships between the input features and the predicted outcomes for these material parameters. 
 

(a) (b) (c) 

   

 
(d) (e)  

(f) 

   

Fig. 6. SHAP feature importance analysis: (a) σ0; (b) K; (c) n; (d) r0; (e) r45 and (f) r90. 
Model noise sensitivity after feature selection 
New training and test sets were generated by excluding features not displayed in Fig. 6 from the 
original training and testing sets. These refined new sets, each comprising 118 features (as opposed 
to the original 24340 features), served as the basis for further analysis. Additionally, a perturbed 
training set was derived from this refined training set, adding a noise level of ± 20% on the strain-
related features. A model was trained with the refined training set, and another underwent training 
with the training set containing added noise. Both models achieved training completion in less than 
1 minute, in contrast to the original training set, which required about 3 hours (13th Gen Intel(R) 
Core(TM) i9-13900 24-core @2.00 GHz, 32 Gb RAM) . The validation of both models was 
conducted using the same training set. Table 2 presents the performance of the ML models trained 
with a refined training set, where the comparison focuses on models trained with a refined training 
set under two conditions: noise-free and with ± 20% added noise. The results show that the model 
only requires a small fraction of the original 243340 features to have excellent results in predicting 
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the values of the six material parameters. Incorporating a noise level of ± 20% results does not 
significantly diminish the model’s predictive performance, as shown in Table 2. Comparing Fig. 
7 to Fig. 5, only 6 samples exceed the 5% error threshold for the model trained with a noise-free 
set, and 11 samples for the model trained with ± 20% added noise. Again, these instances are 
minimal in comparison to the overall size of the test set, again demonstrating the model's 
robustness in estimating material parameters in the presence of added noise and assuming a small 
fraction of the total number of features. 

 
Table 2. Influence of added noise to the refined training set on model performance in predicting 

the material parameters. 

Noise 
range R2_σ0 R2_K R2_n R2_r0 R2_r45 R2_r90 

± 0% 0.9982 0.9935 0.9826 0.9991 0.9947 0.9991 
± 20% 0.9981 0.9923 0.9688 0.9983 0.9934 0.9981 

 
(a) (b) 

 
 

Fig. 7. Relative error jδ  in the prediction of material parameters for the 671 samples of the test 
set: (a) model trained with a noise-free training set; (b) model trained with ± 20% added noise. 

Models trained with only 118 features. 
 
In Fig. 8, a comparison is presented between the actual and predicted hardening curves, along 

with Lankford coefficients in the sheet plane. This comparison focuses on 3 samples surpassing 
the 5% error threshold (see Fig. 7 (a)), considering the model trained with a noise-free dataset. 
Generally, the prediction error for the hardening curve remains below 2.5%. However, the 
maximum error in predicting the Lankford coefficients tends to exceed 5%, particularly at r45, 
except for the sample labeled "134". This discrepancy may be attributed to the limited sensitivity 
of the cruciform test results in estimating r45. 
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(a) (b) 

 

  

 
(c) 

 
(d) 

 

  

 
(e) 

 
(f) 

 

  

Fig. 8. Comparison between the actual and predicted hardening curves for samples labelled 
“26”, “474” and “134”, along with Lankford coefficients in the sheet plane. 

Conclusions 
This study demonstrates the effectiveness and competitiveness of machine learning-based 
techniques, namely using the XGBoost algorithm, in predicting material parameters for sheet metal 
forming simulations. Feature analysis highlights the significance of key features, accelerating 
model training without sacrificing predictive performance. The model's robustness is evident, with 
noise addition in key features minimally affecting predictive performance.  

-3-2-10123100200300400500
0 0.05 0.1 0.15 0.2R el

. er ro r (Y [ M P a]

  

26 26_predicted (0% noise) 26_predicted (20% noise)
rel. error (0% noise) rel. error (20% noise)

-2.5

-1.5

-0.5

0.5

1.5

2.5

0

100

200

300

400

0 0.05 0.1 0.15 0.2

R
el

. e
rr

or
 (%

)

Y
[M

Pa
]

Equivalent plastic strain

-10

0

10

20

30

0

1

2

3

0 15 30 45 60 75 90

R
el

. e
rr

or
 (%

)

r

Angle w.r.t. rolling direction (º)

-3-2-1010100200300400500
0 0.05 0.1 0.15 0.2R el

. er ro r (Y [ M P a]

  

474 474_predicted (0% noise) 474_predicted (20% noise)
rel. error (0% noise) rel. error (20% noise)

-2.5

-1.5

-0.5

0.5

1.5

2.5

0

100

200

300

400

500

0 0.05 0.1 0.15 0.2

R
el

. e
rr

or
 (%

)

Y
[M

Pa
]

Equivalent plastic strain

-10

0

10

20

30

0

1

2

3

0 15 30 45 60 75 90

R
el

. e
rr

or
 (%

)

r

Angle w.r.t. rolling direction (º)

-4100.511.522.53
0 15 30 45 60 75 90R el

. er ro r (r

l   lli  di i  ( )

134 134_predicted (0% noise) 134_predicted (20% noise)
rel. error (0% noise) rel. error (20% noise)

-2.5

-1.5

-0.5

0.5

1.5

2.5

0

100

200

300

400

0 0.05 0.1 0.15 0.2

R
el

. e
rr

or
 (%

)

Y
[M

Pa
]

Equivalent plastic strain

-5

-2.5

0

2.5

5

0

1

2

3

0 15 30 45 60 75 90

R
el

. e
rr

or
 (%

)

r

Angle w.r.t. rolling direction (º)



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 1807-1816  https://doi.org/10.21741/9781644903131-200 

 

 
1816 

Acknowledgments 
This work has received funding from the Research Fund for Coal and Steel under grant agreement 
No 888153. The authors also gratefully acknowledge the financial support of the Portuguese 
Foundation for Science and Technology (FCT) and by UE/FEDER through the programs 
CENTRO 2020 and COMPETE 2020, UIDB/00285/2020, UIDB/00481/2020 and 
UIDP/00481/2020-FCT, DOI 10.54499/UIDB/00481/2020 
(https://doi.org/10.54499/UIDB/00481/2020) and DOI 10.54499/UIDP/00481/2020 
(https://doi.org/10.54499/UIDP/00481/2020), CENTRO-01-0145-FEDER-022083,  
LA/P/0104/2020 and LA/P/0112/2020. It was also supported by the project RealForm (reference 
2022.02370.PTDC), funded by Portuguese Foundation for Science and Technology. J. Henriques 
was supported by a grant for scientific research from the Portuguese Foundation for Science and 
Technology (ref. 2021.05692.BD). 
References 
[1] A. Andrade-Campos, N. Bastos, M. Conde, M. Gonçalves, J. Henriques, R. Lourenço, J.M.P. 
Martins, M.G. Oliveira, P. Prates, L. Rumor, On the inverse identification methods for forming 
plasticity models using full-field measurements, IOP Conf. Ser. Mater. Sci. Eng. 1238 (2022)  
012059. https://doi.org/10.1088/1757-899X/1238/1/012059 
[2] P.A. Prates, J.D. Henriques, J. Pinto, N. Bastos, A. Andrade-Campos, Coupling machine 
learning and synthetic image DIC-based techniques for the calibration of elastoplastic constitutive 
models, Mater. Res. Proc. 28 (2023) 1193-1202. https://doi.org/10.21741/9781644902479-130 
[3] J. Martins, A. Andrade-Campos, and S. Thuillier, Calibration of anisotropic plasticity models 
using a biaxial test and the virtual fields method, Int. J. Solids Struct. 172 (2019) 21–37. 
https://doi.org/10.1016/j.ijsolstr.2019.05.019 
[4] Dassault Systèmes. Abaqus 2017 documentation, 2017. 
[5] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) 
785–794. https://doi.org/10.1145/2939672.2939785 
[6] S. Lundberg and S. Lee, “A Unified Approach to Interpreting Model Predictions”, 2017. 
 


	Influence of data filtering and noise on the calibration of  constitutive models using machine learning techniques
	Introduction
	Numerical simulation model
	Dataset generation, model training and performance evaluation
	Performance evaluation with training set noise
	Feature analysis and selection
	Model noise sensitivity after feature selection
	Conclusions
	Acknowledgments
	References


