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Abstract. When forming high-strength steel sheet material, premature failure can occur at shear-
cut component edges because formability of the base material is reduced due to work hardening 
caused by the previous punching process. Here, the digitization of production processes provides 
new possibilities for quality monitoring of such forming and stamping processes. In this context, 
the present paper deals with a novel machine learning (ML) based method for determining the 
residual formability of sheet metal materials from measured punching force curves. The specific 
objective of the study carried out was to develop an efficient and accurate method for predicting 
the residual formability of shear-cut edges. The methodology proposed for this purpose involves 
collecting a comprehensive dataset comprising experimental measurements of material properties, 
cutting conditions and punching-force curves measured during blanking. To determine the residual 
formability of the sheet metal materials investigated, hole tensile tests were performed and the 
maximum major and minor principal strain at initiation of cracking were measured. This dataset 
was then used to train and validate different AI prediction models, which employ machine learning 
algorithms to establish complex relationships between input parameters and residual formability. 
Introduction and State of the Art 
Shearing is generally one of the most economically important manufacturing processes in sheet 
metal working industry [1]. During its production process, almost every sheet metal component is 
cut as a blank from a semi-finished product, trimmed or perforated prior to forming [2]. In addition 
to constantly increasing demands on the quality of formed sheet metal components, the component 
edges produced during shear cutting therefore also have to meet ever higher quality requirements. 
These quality requirements for cut edges and surfaces are characterised by a small edge radius, a 
high proportion of smooth cuts, freedom from burrs, low fracture surface heights and tight 
manufacturing tolerances [3]. Furthermore, the quality criterion of the residual formability of 
shear-cut edges of sheet metal components is becoming increasingly important, especially with 
regard to modern lightweight materials such as high-strength aluminium grades [4] or dual-phase 
steel sheets [5]. The residual formability of sheared sheet metal component edges is reduced due 
to the high plastic deformations and strain hardening within the shear affected zone (edge effect). 
Low residual formability can lead to edge cracks during the subsequent forming of cut and punched 
sheet metal components, emanating from the edge of the component or from the cut-outs. The 
formation of edge cracks on shear cut component edges crucially depends on the selected cutting 
parameters and the wear condition of the cutting elements used [6]. 

The only standardised method for determining the susceptibility to edge cracking is the hole 
expansion test described in DIN 16630 [7]. This two-stage process consists of a hole punching 
operation followed by a forming operation to expand the punched hole. The hole expansion ratio 
achieved up to crack formation provides a value for assessing the edge crack sensitivity of a sheet 
metal material. The crack initiation during these tests is usually detected using a camera system. 
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However, due to the wide range of parameters (punch diameter and radius on the drawing die) 
allowed by the standard, it is often difficult to compare different tests with each other. Other 
methods for determining edge crack sensitivity include the Diabolo Test developed at the IFU 
Stuttgart, which can only be used for open cut edges, and the Edge-Fracture-Tensile-Test (EFTT) 
method, which allows for analysis of both open and closed cut edges [8]. Watanabe developed the 
Open Hole Tensile Test (OHTT) method [9], which was adapted from the field of composite 
materials to metallic materials. In this method, a hole is punched in a rectangular specimen with a 
closed cutting line and subsequently subjected to uniaxial tensile loading. The tests thereby are 
analysed using a DIC capable camera system. However, a major disadvantage of the testing 
methods mentioned in this section is that none of them can be directly integrated into production 
processes for inline monitoring. 

Based on the guidelines of Industry 4.0, meanwhile also the value chain in the stamping sector 
has been digitized, e.g. by integrating sensors into the stamping tools to collect large amounts of 
process data. Combined with analysis using machine learning (ML) methods, this enabled the 
development of new systems for monitoring stamping and forming processes. As a result, 
parameters that previously had to be determined in time-consuming procedures can now be 
measured inline during the process using ML methods. For example, the wear condition of a punch 
can be characterized by evaluating cutting force-displacement curves [10, 11]. Molitor was also 
able to predict the wear state of the punch from images of the stamped parts using convolutional 
neural networks [12]. Schenek et al. showed that the regression capability of artificial neural 
networks (ANN) enables material properties to be determined from cutting force-displacement 
curves [13]. In another study, the same authors showed that ANN can also be used to determine 
cutting surface quality parameters (edge draw-in height, clean cut height, fracture surface height, 
and burr height) from punching force curves measured during the stamping process [14]. 

The current state of the art shows that a number of properties that could previously only be 
measured offline can now be determined inline by using measuring systems based on ML models. 
In this context, a novel ML based method for determining edge crack sensitivity will be presented 
in this paper. Investigations will be described, which were performed to examine whether an ML 
model can be used to predict the maximum achievable major and minor principal strain at the onset 
of fracture based on cutting force displacement curves measured inline during punching. In these 
investigations, training data was determined experimentally in a first step. Here, cutting tests were 
carried out to determine the punching force and OHTT were performed to determine the major and 
minor principal strains. This data set subsequently was used to train and compare ML models with 
increasing complexity. The models considered here were linear regression (LR), support vector 
machine regression (SVM), random forest (RF) and artificial neural network (ANN). 
Experimental Setup 
A data set consisting of input and output data is required to create an ML model. The following 
section describes how this data set was determined experimentally. Punching force curves recorded 
during a stamping process were used as input data for training the ML models. The experimental 
investigations for recording the punching force curves were carried out using a modular test tool. 
Figure 1 shows a 3D rendering and cross-section of the tool used. The tool was equipped with a 
load cell for direct force measurement (Kistler 9104a) and an additional displacement 
measurement system (TR 8710-100). The measurement was performed with measuring frequency 
of 10 kHz, ensuring a high resolution of the measured punching force curves. During the 
experimental investigations, the punch was firmly clamped in the shank area of the punch over a 
length of 22 mm. The shank diameter of the punch was 13 mm in all tests performed in this study, 
in accordance with the ISO8020 standard. The initial cutting edge radius of the punch was approx. 
50 µm and was determined using an optical microscope. The parameters used in the tests are shown 
in Table 1. The 90 punching force curves measured during the tests are shown in Figure 1 (a). The 
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output data for training the ML models were recorded through open-hole tensile tests. The tests 
carried out according to the method proposed by Watanabe [9]. Described tests were performed 
on a Roell + Korthaus RKM 100 material testing machine. The ARAMIS 12M digital image 
correlation system was used to measure the specimen strains. Figure 1 (b) shows two exemplary 
images of the Aramis 12M system taken out of the test series. Here, the left image shows the 
distribution of the major principal strain at the start of the test and the right image shows the major 
principal strain at the initiation of the crack. The maximum tolerable major and minor strain up to 
failure is determined at a distance of 1 mm from the edge of the introduced hole. Figure 1 (c) shows 
an overview of the results of all OHTTs performed. 

 
Fig. 1. 3D rendering of the modular test tool (a); sectional view of the modular test tool. 

Table 1. Punching parameters investigated in the present study. 
Parameter Value 

Length of punch  80 mm 
Cutting clearance  10%, 15% 
Sheet Thickness  1 mm 
Punch diameter 10 mm 
Material DP600, DP1000, DC03 

Feature Engineering, Model Design and Training 
The data-specific investigations described in this paper were carried out using the Python 
programming language. The deep learning library TensorFlow (TF) was used to correlate features 
with the major and minor principal strain at crack initiation. TF was developed by researchers at 
Google specialising in artificial intelligence. Other Python libraries used in the research presented 
were Numpy for data preparation, Matplotlib for plotting, Pandas for reading data from 
measurement logs and Scikit-learn for performing the hyperparameter tuning, standardization and 
the training of the RF, SVM and LR Model. 

In the first step of the data processing, the punching force curves recorded in the experiments 
were processed with a proprietary script and the shearing process itself was extracted from the 
time series data (Figure 1a). In addition to reducing the amount of data to be processed, this 
extraction also improved the prediction quality of the models, as only the relevant physical regions 
of the recorded measurement signal were taken into account. Previous studies have shown that the 
prediction quality of an AI model is strongly dependent on the quality and preparation of the 
training data. The process of systematic preparation of the training data is also referred to as feature 
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engineering od feature extraction. Feature engineering is based on domain-specific expert 
knowledge and feature extraction on algorithms for the statistical analysis of the data. For the 
research presented in this contribution, only feature extraction based on Principal component 
analysis (PCA) was used. 

PCA was applied to the resulting data set, as it provides a method to summarise the training 
data and extract features that represent the individual differences in the process. PCA was thus 
used to identify a reduced data set based on components that still represent the original training 
data in a lower dimensional subspace, but with minimal loss of information [15]. Here, it was 
ensured that the calculated components described 95% of the variance of the original data set, 
which could be accomplished with ten components. This data set, reduced to 10 components, was 
used for the following model training. To train the ML model, the data set was divided as follows: 
80% of the total punch force curves and the associated parameters from the hole tensile tests were 
used as the training data set. The remaining 20% of the total data set were further split in a 
validation (10%) and a test data set (10%). 

In order to determine optimal hyperparameters for the models the validation data set was used 
The ANN was tuned with the "Hyperband" tuner integrated into Keras. The aim of the optimization 
was to minimize the validation loss of the model. Table 2 shows an overview of the parameters 
varied and the range of parameters varied during the hyperparameter tuning of the ANN and the 
results of the tuning process. The SVM was tuned by varying the kernel functions. The model with 
the best R2 Score was choosen. Table 3 shows an overview of the varied kernel functions and the 
results of the tuning process. The RF model was optimized by using the “GridSearchCV” function 
of Scikit-learn. The aim of the optimization was to minimize the validation loss of the model during 
the tuning process. The parameters varied and the range of parameters varied during the 
hyperparameter tuning of the RF are shown in  

Table 2. Hyperparameter tuning ANN. 
Parameter Parameter range Results of tuning 

Number of Hidden Layers 3 to 6 6 
Neurons per Hidden Layer 32 to 512 (steps of 32) 320, 286, 192, 416, 32, 32 

Activation function Sigmoid, ReLU ReLU 
 

Table 3. Hyperparameter tuning SVM. 
Parameter Parameter range Results of tuning 

Kernel sigmoid, rbf, poly, linear sigmoid 

Table 4. Hyperparameter tuning RF. 
Parameter Parameter range Results of tuning 

Number of Tress 10,50,100 50 
Depth of the Tree 10,50,100 10 

Number of samples at leaf node 1,2,4 2 
Samples to split an internal node 2,5,10 2 
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Fig. 2. Experimentally determined punching force curves (a), Strain distribution at the 

beginning and during crack initiation in an OHTT (DC03, cutting clearance: 10%)(b), Results 
of the OHTT(c). 

Results and Discussion 
Figure 2 shows a comparison of the model training results for the different ML models examined. 
The bar plot shows the mean squared error (MSE), mean squared error (MAE) and the R2-Score 
for all models. These results were determined for the training data set Figure 2 (left) and the test 
data set not used for training or hyperparameter tuning Figure 2 (right). Due to the small difference 
in model error between the training and test datasets, overfitting and underfitting of the generated 
models is not observed. Because Support Vector Machine models can only predict one parameter 
due to their particular characteristics, two separate models were trained for each model type for 
major and minor principal strain at crack initiation. In order to achieve better comparability, the 
results for the ANN were also presented separately for major and minor principal strain. The 
comparison of the results shows that all trained models achieve a high Pearson correlation 
coefficient (>0.8), demonstrating the models' fundamental industrial applicability [16]. The 
comparison of prediction quality shows that the RF model has the highest regression quality and 
the lowest MAE for both predicted variables. The LR model has the second best prediction quality. 
The SVM model and the ANN are comparable in their performance. Both models show a 
significant difference in regression quality when comparing the predictions for major and minor 
principal strain. This shows that increasing model complexity does not improve the prediction 
results. At first this result seems surprising as the sheet metal forming process is characterized by 
strong non-linearities. It is expected that the ANN performs best and LR worst due to the higher 
model complexity. We assume that this might be due to two factors. The use of PCA leads to a 
type of linearization that simplifies the problem and may have a positive effect on the less complex 
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model. Furthermore, the data set used is relatively small and contains just 90 force curves. This 
means that the optimum result may not be achieved during hyperparameter tuning or subsequent 
training. In conclusion, the objective of the study was achieved. By using an RF model, it is 
possible to determine the maximum principal and minor strains at crack initiation from cutting 
force curves measured during punching operations. 

 
Fig. 3. Comparison of the prediction quality of the different models for the major and minor 
principal strain at crack initiation for the training data set (left) and the test data se (right). 

Summary and Outlook 
During the processing of high strength steel and aluminium sheet metal materials, premature 
failure can occur at the shear cut edges of components. This is due to the reduced formability 
induced by the punching process, particularly when compared to the inherent formability of the 
base material. Conventional testing methods are unable to measure the resulting residual 
formability inline during the blanking or punching process. In this contribution a novel method for 
characterising the maximum tolerable major and minor strain in combined shearing and forming 
processes based on ML was presented. As part of the investigations, it was shown that the 
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regression capability of an Random Forrest model is able to predict the maximum residual 
formability after punching on the basis of inline measured cutting force-displacement curves. 

To advance the research presented in this publication, further investigations will be undertaken 
at IFU by transferring the results to other material classes such as copper or aluminum. 
Additionally, the influence of batch-related fluctuations in the semi-finished product properties 
will also be investigated. Future research will also investigate transfer learning methods to reduce 
the amount of data required for model training. Furthermore, the influence of wear of the tool parts 
on the prediction quality of the models will be investigated through endurance tests.  
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