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Abstract. Fluctuating process conditions, such as lubrication, can disturb the production process 
and lead to faulty components that have cracks or wrinkles. Real-time identification of process 
parameters can detect deviations in sheet forming operations and enable the process parameters to 
be adjusted. To increase process robustness, closed-loop control is often used to monitor and 
influence the material draw-in, which corresponds to the material flow and can be measured by 
camera systems inside the deep-drawing press. The aim of this work is to develop a control concept 
that can predict the optimum blank holder force by estimating the coefficient of friction based on 
the material draw-in of the last stroke. Using a cross-die geometry, it is shown how the material 
draw-in can be determined experimentally by means of a camera system and numerically by FE 
simulations. Finally, artificial neural network-based models are trained through simulations and 
are subsequently tested on a numerical case study in which the coefficient of friction is changed 
as a disturbance variable and must be compensated for. The widely applicable control concept has 
the potential to incorporate additional softsensors, for example to determine material properties, 
and other target variables, such as the punch force, into the optimization algorithm. 
Introduction 
With increasing component complexity in the automotive industry, the sensitivity of deep drawing 
operations to process fluctuations increases, which leads to a narrowing of the process window. 
Due to the high cost pressure, press lines must develop efficient strategies to avoid the occurrence 
of defects under these challenging conditions. One solution to this is closed-loop control, in which 
quality-relevant product characteristics are monitored and, if necessary, appropriate actuators are 
used to make the necessary adjustments to the process parameters. Recently, various approaches 
were presented for recording component quality by means of optical measurements using camera 
systems installed in the press and integrating them into closed-loop controls. In addition, there is 
great potential in data-driven modeling to optimize the manufacturing process or for real-time 
identification of disturbances during deep drawing. 

Deep drawing processes are non-static due to fluctuations, where disturbances can have a 
negative impact on process stability over time [1]. Short-term disturbances include, for example, 
variable sheet thickness. Varying material properties, tool wear and tool temperature are examples 
of long-term disturbances. To that end, the tool warms up at the start of a batch and influences the 
lubrication conditions as well as the friction behavior between the sheet metal and the tool [2]. 
Depending on the time characteristics of these disturbances, different concepts can be selected in 
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order to create a closed-loop control to compensate for them. Whereas offline controls are better 
suited for long-term disturbances, as they measure the component properties between two or more 
strokes and can make adjustments to the process parameters with a time delay [3], online controls 
are preferable for short-term disturbances, as they can adjust the process parameters during the 
stroke. Lo and Yang [4] proposed a concept to detect the minimum side wall thickness and the 
wrinkle height during the deep drawing process and to continuously adjust the blank holder force 
(BHF) over the drawing depth by a control algorithm. This concept shows that the choice of sensor 
technology is linked to the target variable of the control system. Siegert et al. [5] developed a 
sensor to measure the frictional force between blank and die. They successfully demonstrated that 
the BHF can be adjusted to achieve a constant frictional force despite varying amounts of lubricant. 
Force sensors can also be integrated into the punch, as the forming process can be characterized 
via the punch force [6]. In most cases, however, the material draw-in or material flow is measured 
to control the deep drawing process even in cases where accessibility of the workpiece in the tool 
is restricted. For example, Behrens et al. [7] developed a special optical sensor for a contact-free 
measurement of the material flow. 

The potential of machine vision for contactless quality monitoring and component measurement 
is constantly increasing in deep drawing. One of the first examples of online defect detection in 
the press shop is the image acquisition system from Gayubo et al. [8], in which the components 
were inspected at the end of the press line by a camera operated by a robot. A valley detection 
algorithm was used to identify the cracks. Current developments show that convolutional 
autoencoders can also be used to detect faulty components, including wrinkles [9]. However, 
indirect quality features can be defined and visually evaluated instead of directly identifying the 
defects, such as the material draw-in after the first drawing stage [10]. This offers the advantage 
of possibly detecting interior cracks or ruptures, which would be otherwise challenging. Moreover, 
this increases the time-window where corresponding countermeasures can be adopted before the 
faulty part reaches the end of line inspection. In the case that the flange is cut off before the image 
can be captured, the material flow can alternatively be measured via the position of the skid-lines 
[11]. This strategy enables continuous quality monitoring, where intervention limits can be set for 
the position of the skid-lines, indicating when action is required to prevent part failure [12]. 
Additionally, camera-based quality monitoring offers advantages for press hardening [13]. Optical 
systems can also be used as sensors for closed-loop control. Using a kitchen sink as an example, 
Fisher et al. [14] demonstrated that the draw-in can be controlled using a proportional control 
algorithm to adjust the BHF. Various control algorithms can be used to stabilize the deep drawing 
process. A controller designed as an optimal control problem gives good results in the example of 
a front fender and has an integral behavior [15]. 

Machine learning methods, in particular employing artificial neural networks (ANNs), can be 
applied in the context of intelligent process control and process optimization. ANNs are suitable 
for training models which act as softsensors, estimating otherwise unmeasurable product 
properties and process parameters based on known data [16]. Zhao and Wang [17] trained an ANN 
for the determination of friction conditions on the basis of the punch force and other process 
parameters. In a similar way, varying material properties can be identified [18]. An alternative for 
measuring material properties is the eddy current based material testing, which can be integrated 
directly into the production process [19]. Mork [20] combined this non-destructive material testing 
with an ANN to make predictions about the quality of each component and, if necessary, 
automatically adjust the deep drawing process. Further, ANNs can be employed in combination 
with an optimization algorithm and aid in identifying the optimum parameters for deep drawing 
processes. Tai and Lin [21] applied a simulated annealing optimization algorithm to an ANN to 
search for the optimal clearance between punch and die. This strategy was also used to improve 
sheet thinning during deep drawing [22]. Particle Swarm Optimization (PSO), belonging to the 
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family of meta-heuristic optimization algorithms, is another example of a widely used algorithm. 
El Mrabti et al. [23] first used a finite element model to generate a database with which they trained 
an ANN to predict springback. The authors then applied PSO to determine the best settings for the 
BHF and punch speed to minimize springback. 

In this study, a concept for estimating and compensating of friction for enhanced deep drawing 
process control is presented. First, a camera system is introduced to measure the draw-in during 
the experimental investigation of the deep drawing process. Next, a finite element model is 
developed to map the influence of the coefficient of friction on the draw-in. The control concept 
is then described, which includes a softsensor for estimating the coefficient of friction and a PSO-
based optimization algorithm. This concept requires the training of two ANN-based regression 
models, one to estimate the coefficient of friction and, by extension, the lubrication condition and 
another for estimating the draw-in. Finally, the effectiveness of the control for stabilizing the deep 
drawing process is tested on a numerical case study. 
Experimental and numerical setup 
Experiments and simulations are used to investigate the behavior of the draw-in with respect to 
press parameters, material properties and lubrication conditions. The experiments are carried out 
on a hydraulic press with a drawing cushion. A cross-die shape is selected as the geometry 
(Fig. 1a). Sensors to measure ram force and BHF are integrated into the press. A SelVision 
monitoring system provided by the metrology specialists Selmatec Systems GmbH was installed 
in the press to measure the draw-in. The installed system consists of two cameras mounted in 
opposite corners of the hydraulic press (Fig. 1b). An interface was consequently set up between 
the monitoring system and the press control system. This enables continuous recording of the 
process forces and the tool position for each stroke and their automatic mapping to the images 
taken by the cameras. 

 
Fig. 1. (a) Cross-die tool in the hydraulic press and (b) close-up of the camera on the right side 

Experiments with the parameters listed in Table 1 show that each parameter change has a 
considerable effect on the draw-in measured by the cameras. On the one hand, the viscosity of the 
lubricant affects the friction, with lower viscosities shortening the draw-in and provoking material 
cracks. On the other hand, the BHF also influences friction, with low BHF lengthening the draw-
in. The BHF is therefore generally suitable for compensation for changes in lubrication conditions. 
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Table 1. Parameters for the deep drawing experiments 

Parameter Value 
Material and thickness t [mm] DC04 (0.7 – 1.0); DC01 (0.8 – 1.0) 
Blank holder force FBH [kN] 40 – 170 – 300 – 430 – 560 – 690 
Drawing velocity v [mm/s] 5 – 30 
Lubricant viscosity η [mm²/s] 100 – 400 
Drawing depth h [mm] 55 

To test the measuring accuracy of the monitoring system, selected components were measured 
using an ATOS 3D-Scanner. Fig. 2a shows the results for the material DC04 with a thickness of 
1 mm at a drawing speed of 30 mm/s using the lubricant with a viscosity of 100 mm²/s. The camera 
system automatically captures the greyscale images after each stroke when the blank holder is at 
the initial position (Fig. 2b). An edge detection algorithm is used to measure the movement of the 
workpiece edge in relation to the undeformed blank in pixels. The draw-in is then calculated in 
millimeters by means of a calibration function. The results confirm that the measured values of the 
two measuring systems are consistent with one another with an average deviation of 0.2 mm. 

 
Fig. 2. (a) Comparison between ATOS and SelVision and (b) images taken by the camera 

A finite element model was developed in Abaqus/explicit to investigate the influence of the 
coefficient of friction on the draw-in and to create a database for training the ANNs. The drawing 
velocity is artificially increased to minimize the computational cost, resulting in a total step time 
of 0.05 s. The sheet metal and tooling have been reduced to a quarter of the original size for 
efficient data generation. The components of the tool (e.g. punch, die, blank holder) are integrated 
as rigid surfaces. Friction was defined in the same way for all contacts between tool and workpiece 
using a constant coefficient of friction, which is varied in the following investigations. The sheet 
was modeled with an approximate element length of 1.5 mm and C3D8R was selected as the 
element type. Preliminary tests showed that a number of two elements over the sheet thickness 
give good agreement with the experimental results in terms of draw-in. The material properties of 
the four materials used in the experiments were determined by tensile tests according to DIN EN 
ISO 6892-1 with a gauge length of 80 mm. The properties of DC04 are discussed in more detail 
as this material was selected for the numerical case study. The yield curve was determined by 
Swift, Eq. (1), with a yield strength of σf0 = 116.687 MPa and the anisotropy was defined in 
accordance with Table 2. The simulation and the experiment match sufficiently well (Fig. 3a). 
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𝜎𝜎f =  538.374 MPa ∙  (0.004 +  𝜀𝜀)0.274                (1) 
Table 2. Normal anisotropy of DC04 sheet metal with t = 1 mm 

r0 r45 r90 𝒓𝒓� 
2.178 1.696 2.454 2.006 

 
Fig. 3. (a) Comparison between simulation and experiment regarding material draw-in and (b) 

results of the simulation for changing coefficient of friction (DC04, t = 1 mm) 
The coefficient of friction and the BHF were varied in the simulation for each material 

according to Table 3. The results make it clear that the draw-in generally decreases with increasing 
coefficient of friction and increasing BHF (Fig 3b). For a BHF of 40 kN, the draw-in is almost 
identical regardless of the coefficient of friction. Since a slight wrinkling was observed in the 
experiments for such a low BHF, the corresponding simulation data of each material were excluded 
for the model training. All data where a necking was visible in the simulation and the draw-in was 
less than 10 mm were also excluded. In order to still have sufficient data for training the ANNs, 
additional simulations were then carried out for DC04 with t = 1 mm, varying the BHF in smaller 
increments of 26 kN over a range of 170 kN to 690 kN for the entire range of the coefficient of 
friction. Ultimately, a numerical dataset with six features and 247 instances was generated. 
 

Table 3. Parameters for the deep drawing simulations 

Parameter Value 
Blank holder force FBH [kN] 40 – 170 – 300 – 430 – 560 – 690 
Coefficient if friction μ [1] 0.06 – 0.07 – 0.08 – … –0.13 – 0.14 – 0.15 

Control and modelling approach 
A discrete control concept has been developed that intervenes in the deep drawing process between 
two strokes (Fig. 4). As the material draw-in is a suitable monitoring variable, the control is 
designed to incorporate a camera system for draw-in detection. The target value of the draw-in is 
referred to as lt and the actual measured value is referred to as la. The draw-in is stabilized by 
adjusting the BHF FBH, which is determined for each stroke via PSO. The PSO implementation 
was realized through the open-source Python package “pyswarm”, where an objective function is 
designed to optimize FBH by minimizing the absolute difference between the measured draw-in la 
and the target lt. The algorithm iteratively updates the position of each particle in the bounded 
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search space based on the particle’s status and the status of the entire swarm and converges when 
one of the stopping criteria is met: either through reaching the maximum number of iterations 
permitted or through a function change smaller than the defined threshold. For this application, the 
default parameter values were used. The reader is referred to Wang et al. [24] for additional 
information on the optimization procedure of the PSO algorithm. 

The objective function of the optimization algorithm is based on an ANN that predicts the draw-
in lp for various parameter combinations. As the input variables of the objective function include 
material properties such as sheet thickness t, yield strength σf0 and anisotropy 𝑟̅𝑟, it can be applied 
to different cases. Since the focus of this work is on friction, the coefficient of friction is estimated 
using an ANN-based softsensor, which requires the values of the bank holder force FBH and the 
draw-in la of the last stroke to estimate the coefficient of friction for that stroke. If necessary, other 
measurements, such as the punch force, can be integrated and additional softsensors can be 
engaged to estimate the material properties. Moreover, a combination of target variables can be 
considered in the optimization algorithm. Both ANN-based models are feed forward neural 
networks trained to estimate a continuous target variable. For efficiently exploring the 
hyperparameter space, a two-stage approach was performed: in the first stage, optimal settings for 
the number of hidden layers and the corresponding neurons per layer as well as the non-linear 
activation function were investigated through a random search, where all possible combinations 
are shuffled and 50 of which are chosen at random to be tested. In the second stage, the batch size 
and the learning rate of the adam optimizer were investigated for the best performing parameters 
from stage 1. Early stopping was also included in the search as to account for computational 
efficiency. All combinations of the aforementioned parameters to be varied are shown in Table 4. 
For validation, a four-fold cross-validation approach was implemented to ensure robustness. The 
model’s performance for each hyperparameter set was quantified using the mean squared error 
across all validation folds, where the loss across all folds was computed and averaged for every 
combination. After this initial hyperparameter exploration, the best performing combinations were 
empirically used to train and test different models, this time using an 80/20 data split, stratified 
according to friction. With the aim to increase model generalizability, L1 and L2 regularization 
were tested but led to a degradation in performance and were thus not incorporated. A 5 % dropout 
for the neurons in the hidden layers in combination with early stopping was sufficient so as to 
prevent critical overfitting. The final models reached R2 values of 0.997 and 0.999 on the training 
set and reached similar performance on the holdout set of the split.  
 

Table 4. Two-stage hyperparameter exploration combining random and grid search methods 

Hyperparameter Range 
Stage 1: 50 combinations of  

Number of hidden layers [1, 2, 3] 
Neurons per layer [4, 8, 16, 32, 64] 
Activation function [relu, tanh] 

Stage 2: 9 combinations of  
Learning rate [1e-2, 1e-3, 1e-4] 
Batch size [8, 16, 32] 
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Fig. 4. Control concept with ANN-based optimization algorithm and ANN-based softsensor  

Numerical case study 
Using the simulation model described before, a case study was developed to test the functionality 
of the control concept and evaluate it against the uncontrolled process. For the material DC04 with 
a thickness of 1 mm, 25 parts with a draw-in of 16 mm are to be produced. The coefficient of 
friction varies between 0.07 and 0.09 and is changed arbitrarily after five parts to simulate a 
disturbance. In the uncontrolled process, a hold-down force of 300 kN is selected for all strokes. 
Initially, the draw-in is close to the target value, but larger deviations occur during the course of 
the case study, which illustrate the negative influence of the disturbances (Fig. 5). When using the 
control concept, however, the softsensor reacts to the changes of the coefficient of friction. The 
BHF of the first stroke is set to 300 kN. It takes one stroke for the coefficient of friction to be 
estimated. The optimization algorithm then adjusts the BHF so that the target value is met (Fig. 6). 
The fluctuation of the coefficient of friction is the same as in the uncontrolled process. Besides 
this disturbance, the control can deal with abrupt changes of the target value lt from 16 to 15 mm. 
Overall, the case study proves that the concept is suitable for stabilizing the deep drawing process. 

 
Fig. 5. Fluctuating coefficient of friction in the uncontrolled process (DC04, t = 1 mm)  
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Fig. 6. Compensation of friction by adjusting the BHF (DC04, t = 1 mm) 

Summary 
The presented approach, combining real-time monitoring, predictive modeling via ANNs and 
optimization via PSO demonstrates the potential for significant improvements in the accuracy and 
stability of the sheet forming operation. The adaptability of this concept allows for the inclusion 
of more target variables and additional softsensors, which can act as a substitute for physical 
sensors. This provides a scalable solution for various types of process disturbances, while 
simultaneously eliminating the need for expensive and difficult to deploy measurement systems. 
Finally, the following conclusions can be drawn: 

• Camera systems are suitable sensors for measuring the material draw-in after each stroke.  
• The draw-in depends, among other things, on the blank holder force (BHF) and the 

lubrication conditions, such as the coefficient of friction. Since the BHF is known and the 
draw-in can be measured, the coefficient of friction can be estimated. 

• A numerical case study proves that with this approach, the fluctuations of the coefficient 
of friction are detectable and can be compensated by a prediction of the optimal BHF. 
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