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Abstract. Data-driven process monitoring is an approach in the field of forming technology for 
increasing process efficiency. In shear cutting processes surrogate models based on process force 
signals can be used for process monitoring. Currently, the data basis for developing such models 
has to be generated within experiments. The generation of synthetic training data using numerical 
methods seems to be a more efficient alternative approach.  In this work, it is investigated whether 
virtual training data for the prediction of material properties can be generated by numerical 
methods. An FE model of the investigated shear cutting process has been designed and validated 
based on experiments. It is shown that especially the consideration of the tool stiffness has a 
significant influence on the simulated process force signal. The validated FE model is used to 
generate synthetic training data. Based on this data, different prediction models are trained to 
predict the material model parameters based on the force signals. Different model types are 
compared and the hyperparameters are optimized for the preferred model. 
Introduction 
In the field of forming-based production of sheet metal components, increasing component 
complexity and the use of novel materials are leading to narrow process windows [1]. On the one 
hand, this requires a highly accurate process design and, on the other hand, leads to reduced process 
robustness due to transient scattering of process inputs and conditions. The sources of scatter can 
be divided into the categories of material variability, tooling variability, process variability, 
lubrication and random variabilities like incorrect positioning of the sheet [2]. One of the most 
essential category on process robustness are fluctuating material properties [3]. Process robustness 
can be increased by restricting the material and process specification. However, this results in 
significantly increased production costs. Another approach to increase process robustness is 
model-based process monitoring and model-based adaptive process control using process-data 
based digital twins [4]. Acquiring the material properties of the semi-finished product being 
processed is an essential prerequisite for implementing these digital twins. Ideally, this should be 
done directly in the process (inline). Currently, the use of eddy current sensors is an established 
inline-capable method. This method is based on the correlation between local electromagnetic 
properties and the mechanical properties of the sheet metal [5]. One disadvantage of this method 
is the high calibration and hardware integration effort. An alternative method, investigated by 
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Scheneck and others, involves predicting the mechanical properties of semi-finished sheet metal 
products by analyzing the cutting force curves during shear cutting [6]. This method has the 
advantage that shearing operations are carried out on almost any sheet metal component. The 
approach's in-line capability is guaranteed, and only the appropriate measurement technology 
needs to be integrated. Surrogate models are used to derive the mechanical parameters from the 
recorded force-displacement curves. In Scheneck's study, an artificial neural network (ANN) was 
used to predict several mechanical properties, including tensile strength (Rm), yield strengths 
(Rp0.2), elongations at break (At) and strain hardening exponent (n) of different sheet materials. 
The results showed a high level of agreement between the predicted values from the cutting force 
curves and the actual measurements obtained from the tensile test. However, generating training 
data with sufficient quantity and high variance remains a significant challenge in this approach. 
The overall objective is to investigate to what extent prediction models can be generated on the 
basis of virtual training data to predict the material parameters by analyzing the cutting force curve. 
To achieve this, three different material batches of micro-alloyed fine-grained structural steel 
S500MC (1.0984) were used to determine experimentally both the cutting force curves for the 
punching operation as well as the mechanical material properties in conventional tensile test. An 
FE model was established for the punching operation and calibrated using experimental data from 
one of the material batches. The training database is developed by running simulations with varied 
material model parameters. Prediction models are then trained using this data to predict mechanical 
characteristics. At the end, various prediction models are trained and their performance is 
compared. 

Material Characterization and experimental investigations 
The tests were conducted using S500MC material with a nominal thickness of t = 3.2 mm. The 
material batches analyzed were obtained from an actual production line and are available in a strip 
width of b = 78 mm. Initially, conventional tensile tests were performed on the available material 
batches according to ISO 6892-1:2016. Figure 1 shows the resulting stress-strain diagrams. Test 
specimens were taken only in the rolling direction due to the dimensions of the available semi-
finished products. Each batch of material was tested with four samples. Table 1 summarizes the 
mean values of the mechanical properties determined for each batch. Batches 1 and 3 show 
fundamentally similar behavior in the tensile test, but the samples from batch 3 experience has 
higher stress levels. Batch 2, on the other hand, shows significantly different deformation behavior 
and slight hardening. 

 
Fig. 1: Stress-strain curves from tensile tests for the investigated material 
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Table 1: Material characteristics for the investigated material batches 

Material Batch t 
(mm) 

E 
(GPa) 

Rp0.2 
(MPa) 

Rm 
(MPa) 

r2-20/Ag At 
(%) 

Batch 1 3.17 189 571 636 0.66 16.4 
Batch 2 3.22 180 640 662 0.67 9.1 
Batch 3 3.13 187 593 675 0.64 15.5 

 
Shear cutting tests were conducted on the three material batches under consideration, and the 

resulting force-displacement curves were recorded. The tests were performed on a test press at the 
Fraunhofer IWU using a specialized measuring tool. The tool incorporates a load cell directly into 
the force flow of the cutting punch, while displacement is measured using a laser triangulation 
sensor. Figure 2 displays used the tool and the main process parameters. Figure 3 shows five force-
displacement curves for each material batch. The graph shows the cutting force in relationship to 
the displacement of the punch relative to the specimen. It includes both the actual working stroke 
(positive forces) and the back stroke (negative forces). The curves recorded for the different 
batches exhibit significant differences. This indicates that the force-displacement curves are 
fundamentally suitable for detecting the different deformation behavior of the material batches. 
 

 
Fig. 2: Section view of used cutting tool and main experimental parameters 

 
Fig. 3: Experimentally obtained cutting force signals for the 3 investigated material batches  



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 1334-1342  https://doi.org/10.21741/9781644903131-148 

 

 
1337 

FE-based Generation of Synthetic Training Data 
To generate synthetic training data, a 2D FE model was created (see Fig. 3) in LS-Dyna® using 
axial symmetry in 2D. The process parameters, blank holder force (FBH), and die velocity (vy), 
were selected according to the experiments. The isotropic material model MAT024 was used to 
model the deformation behavior of the investigated material. We approximated the flow curve 
using the Hockett-Sherby approach (refer to Eq. 1), where C1 indicates the start of flow and C2 
the maximum yield stress. The expression 𝑒𝑒𝑒𝑒𝑒𝑒 (-𝐶𝐶3∙𝜑𝜑^𝐶𝐶4) describes the non-linear hardening 
behavior. 

𝑘𝑘𝑓𝑓 = 𝐶𝐶2 − (𝐶𝐶2− 𝐶𝐶1) ∙ 𝑒𝑒−𝐶𝐶3∙𝜑𝜑𝐶𝐶4  (1) 

The yield curve parameters were determined based on the tensile test results for material batch 
1 (see Table 3). The damage and failure behavior is modelled using the keyword 
ADD_DAMAGE_DIEM with the option DITYP = 1 where the damage is a function of the 
maximum shear stress. 

 
Fig. 4: FE model for the generation of synthetic training data 

The initial set of parameters was used to simulate the cutting process, resulting in the cutting 
force curve shown in Fig. 5. A significant deviation from the experimentally determined curve was 
observed, particularly in the area of elastic deformation (P1 to P2 (FEM 1)). This deviation was 
caused by the tool element being modeled as a rigid body. To address this, a spring element with 
the stiffness k was introduced into the model to represent the tool stiffness. The spring constant k 
was determined to k = 60 kN/mm through inverse identification. The resulting cutting force curve 
shows a much better match in the range from P1 to P2 (FEM 2). However, there is still a deviation 
between the experiment and simulation in the range from P2 (FEM 2) to P3 (FEM 2). When the 
yield point (P2 (FEM 2)) is reached, the sheet material begins to flow. Due to the progressive 
deformation and the associated work hardening of the sheet metal material, the cutting force 
continues to increase. To achieve better fit in this range, the flow curve parameters C1 and C4 
were adjusted inversely using the experimental cutting force curve. The FEM3 simulation model 
and the experiment show good agreement. Table 2 displays the adjusted flow curve parameters. 
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Fig. 5: Comparison of experimental and simulated cutting force 

The simulation model FEM3 was used to generate the synthetic training data for the surrogate 
modelling. The varied parameters and the variation limits are summarized in Table 2. 
  

Table 2: Identified model parameters and variation limits for generating the synthetic training 
data 

Parameter flow curve approximation based on Range for synthetic training data 
 tensile test cutting force lower bound upper bound 

C1 in MPa 575.3 431 400 460 
C2 in MPa 756.5 756.5 700 800 

C3 [-] 3.5376 3.5376 2,5 4,5 
C4 [-] 0.5369 1.0738 0,53 1,2 

Surrogate machine-learning models based on synthetic training data 
The 163 synthetically generated force-displacement curves were then used to derive mechanical 
properties. We approached this in a two-fold approach. Firstly, characteristic quantities were 
extracted from each force displacement curve. We limit ourselves to the elastic gradient, maximum 
force, work and length of the punch phase [3]. Prior to extracting these quantities, we smoothed 
the force-displacement curves using the Savitzky-Golay-filter [7] to reduce the severe oscillations. 
The correlations between all input and extracted parameters can be seen in Fig. 6. Subsequently, 
we used these characteristic quantities as input for three different machine-learning algorithms: 
the decision tree based random forest (RF) [8] and XGBoost (XGB) [9] as well as a polynomial 
regression (PR) [8]. All models were trained using the scikit-learn package [10]. 
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Fig. 6: Correlation between input- (y-axis) and output-parameters (x-axis) for the ML-

algorithms. 
To obtain a statistically well-behaved data set and improve convergence we normalized our 

data set using the min-max normalization they are scaled to values of [0,1]. Then, we split our 
dataset into a training and a test set with a ration of 0.9 to 0.1. Hyperparameters (HP) for the tree 
base algorithms were determined using a Bayesian optimization (BO) and generalization was 
improved with a 10-fold cross-validation. The 10 models with the lowest mean-squared-error on 
the training set were used to predict the test set. The resulting root-mean-squared-error (RMSE) 
was compared to results of a model with default HPs and finally, the lowest RMSE model was 
chosen. For the RF the default set of HPs yielded the best results while best HPs for XGB are: 
‘colsample_bytree' = 1.0, ‘learning_rate’ = 0.07404622431244764, ‘max_depth’ = 10, 
‘n_estimators’ = 48, ‘subsample’ = 0.6675843330634745. We trained the PR with degrees of 1 to 
8 and again used the test set as metric to choose an appropriate model. As a result, a first-order-
degree polynomial fit was chosen. 

Overall, the XGB gives the best fitting result while yielding similar RMSE values as the RF for 
the test set separately. The polynomial fit clearly underperforms compared to the other regression 
methods. The relevant values are shown in Table 3 and Table 4. 
 

Table 3: RMSE values for the total data set for all three ML-algorithms 

RMSE Full Dataset C1 C2 C3 C4 

XGB 4.68 8.34 0.17 0.05 

RF 5.57 9.21 0.22 0.06 

PR 12.51 16.97 0.44 0.10 
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Table 4: RMSE values the test set for all three ML-algorithms 

RMSE Test Dataset C1 C2 C3 C4 

XGB 10.83 23.12 0.45 0.12 

RF 9.6 23.23 0.5 0.16 

PR 10.78 27.64 0.48 0.15 
 

As the XGB algorithm gave the best results for the training and test set Figure 7 shows the one-
to-one correspondence of all output quantities. Both the training and test set are depicted. Clearly 
the general trend is predicted well for all four material parameters. C1 shows reduced regression 
accuracy for measured values around 400 and 460, i.e. the lowest and highest simulated values. A 
similar effect can be seen for the remaining parameters. This is readily explained by the low data 
density in these intervals. The test set shows some larger outliers in all four cases. 
 

 

 
Fig. 7: One-to-one correspondence between predictions by the XGB algorithm and measured 

values for the parameters C1 to C4. The training set is indicated by red and the test set by yellow 
circles 

For a more intuitive evaluation, Table 5 shows the relative absolute deviation (RAD) for the 
XGB algorithm defined as  
 

RAD  =   1
N
ΣiN |(xi − yi)/yi| (2) 
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where xi are the predicted and yi the expected values and N is the total number of data points. The 
larger error within the test set is not surprising, as these values are predicted, not fit and the test set 
is small, whereby outliers statistically have a larger impact on the metric. Additionally, we provide 
the R2-score in Table 6. This metric quantifies how much of the variance of a dependent variable 
can be explained by an independent variable of a trained regression model. For the full dataset we 
find high values of 0.88 to 0.96, indicating a good fit. As expected, the test set performs worse, C1 
even yielding a negative value of -0.06. The variable C4 yields a relatively high value of 0.75.  
 

Table 5: RAD for the XGB on full and test dataset 

RAD  C1 C2 C3 C4 

XGB (full dataset) 0.08 0.07 0.16 0.17 
XGB (test dataset) 0.12 0.11 0.31 0.28 

 
Table 6: R2-score for the XGB on full and test dataset 

R2  C1 C2 C3 C4 

XGB (full dataset) 0.88 0.89 0.90 0.96 
XGB (test dataset) -0.06 0.42 0.21 0.75 

 
Overall, we have shown using relatively easily accessible synthetic data from Fe-simulations 

in combination with ML-algorithms that force-displacement curves from shear-cutting processes 
are a valid approach to predict various material parameters. The XGB algorithm fits and predicts 
the data well, but few significant outliers remain, which significantly impacts the prediction of 
variance. This issue may be resolved using a larger data set with a more homogeneously distributed 
input parameter space and by finding further input parameters, which have a significant influence 
on the material parameters. One such example could be the sheet thickness or other parameters 
extracted using feature-extraction or -engineering. Finally, a comparison with experimental data 
is necessary to validate this approach. These issues will be covered in future research.  
Summary 
The experimental results demonstrate that the deformation behavior of the investigated material 
varies significantly between different batches.  The cutting force curves obtained from the 
punching tests also vary depending on the material batch. Therefore, analyzing the cutting force 
curves can provide valuable information about the mechanical properties of the semi-finished 
products used. Furthermore, a FE model was developed for the shear cutting process being studied. 
A material model was parameterized based on the results of the tensile test and validated using the 
experimentally determined cutting force curves. This demonstrated the importance of considering 
tool stiffness. The optimized FE model was then used to perform variant calculations and generate 
synthetic training data to build predictive models to predict the flow curve and its parameters. 
Several machine learning algorithms were trained and evaluated using this data. The XGB 
algorithm demonstrated the best performance, accurately predicting the flow curve parameters. 
Future work will focus on optimizing and validating the prediction models using real experimental 
data. 
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