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Abstract. Inherent features of the Nakajima test to determine forming limit curves (FLC) are 
inevitable bending strains and pre-strains originating from evolving punch contact in the early 
stage. Both effects are very annoying and bias the resulting FLC considerably, so that a direct 
comparison of materials with different gauges is impossible. In the present work, a simple 
computational procedure is developed to remove both effects from FLC data. Application 
examples demonstrate its capabilities. 
Introduction 
The forming limit curve (FLC) represents the transition from safe forming to failure and is thus an 
indispensable tool in sheet metal forming to ensure defect-free products. The most frequently used 
methodology in laboratory FLC-determination is the Nakajima approach. It involves stretch-
forming of circular sheet samples possessing different symmetric cut-outs over a hemispherical 
punch to failure, so that a broad range of different strain modes can be realized, thereby providing 
a discrete picture of the FLC. In the present work, the standard FLC representation in terms of 
minor and major in-plane true strains at failure (denoted as 𝜀𝜀2 and 𝜀𝜀1, respectively, with the 
notational convention 𝜀𝜀1 ≥ 𝜀𝜀2) will be considered, i.e. FLC = 𝑓𝑓(𝜀𝜀1, 𝜀𝜀2). Furthermore, the material 
of which the samples are made is approximated as rigid-plastic, i.e. elastic strains are neglected. 

Despite its popularity the Nakajima method introduces two undesired effects: equibiaxial pre-
strains caused by the evolving punch contact in the early stage of the test (see e.g. Noder & Butcher 
[9]), and strains associated with bending of the samples (see e.g. Affronti & Merklein [1]). Both 
effects bias the resulting FLC data in different ways: 

1. Due to the presence of pre-strains, the realized strain-paths are essentially bi-linear (with 
the only exception of the equibiaxial strain mode, which is “immune” to equibiaxial pre-
straining), thus violating an important prerequisite of FLC determination, viz. linearity of 
the imposed strain-paths. As a consequence, the FLC’s minimum point, commonly called 
“FLCmin”, is displaced to the lower right in strain space, i.e. FLCmin does not coincide with 
plane-strain deformation (as it should be the case) and its major strain value is usually 
lowered (see e.g. Müschenborn & Sonne [8]), provided that the bending strains do not 
dominate. 

2. Bending strains act in the opposite direction and lift the major strain values. This is because 
strains measured on the convex side of a bent sample are always larger than, say, in the 
sample’s midplane. This is a pure geometric effect and thus strongly dependent of the 
sample’s thickness. Accordingly, if a (maybe material dependent) sample thickness is 
exceeded, the lowering effect of the pre-strains on the major strain of FLCmin can be 
overcompensated by the bending strains, in which case the FLCmin-point may be only 
slightly displaced in positive minor strain direction, but without altering or even elevating 
its major strain value compared to linear strain paths. 

While the effect of bending strains does solely depend on the material’s gauge, the pre-strain effect 
seems to be material dependent, at least according to the author’s experience. Therefore, it is not 
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possible to compare materials with different gauges, which is very annoying in practice. This 
problem is addressed in the present work, and as a solution a simple computational method to 
remove both the pre-strains and the bending strains from the FLC data is proposed. 

For notational convenience, throughout this paper the following 2 × 1 column matrices 

𝐅𝐅𝐅𝐅𝐅𝐅 ≔ (FLC1, FLC2)𝑇𝑇, 𝐅𝐅𝐅𝐅𝐅𝐅∗ ≔ (FLC1∗, FLC2∗)𝑇𝑇 and 𝜺𝜺∗ ≔ (𝜀𝜀1∗, 𝜀𝜀2∗)𝑇𝑇 (1) 

will be used to store a strain tuple pertaining to a single point of the FLC, associated with zero and 
non-zero pre-strains 𝜺𝜺∗, respectively. 
Forward Retro Analysis 
The present work started with the development of a straightforward approach to reproduce given 
experimental or predicted FLCs using an elastic-plastic constitutive model: a given linear strain-
path is incrementally followed until the target FLC is reached. Here, the key point is the 
formulation of a suitable termination criterion (cf. Eq. 3 below), which can handle pre-strains 
properly. This approach enables the acquisition of experimentally inaccessible data, such as 
stresses and work-conjugate equivalent plastic strains corresponding to the utilized constitutive 
model. This approach is called forward retro analysis, because a given FLC is retrospectively 
analyzed. Using concise notation, the forward retro analysis is written as 

𝐅𝐅𝐅𝐅𝐅𝐅∗ = retro(𝐅𝐅𝐅𝐅𝐅𝐅, 𝜺𝜺∗) (2) 

In all cases, the following equation is to be solved (in an incremental approach this serves as a 
termination criterion to stop the accumulation of strain increments): 

‖𝜺𝜺∗‖ + ‖𝐅𝐅𝐅𝐅𝐅𝐅∗ − 𝜺𝜺∗‖ = ‖𝐅𝐅𝐅𝐅𝐅𝐅‖ (3) 

As a length measure, we define the following strain norm, which is a homogeneous function of 
degree one in terms of the strain components 𝜀𝜀1 and 𝜀𝜀2: 

𝜂𝜂(𝜀𝜀1, 𝜀𝜀2) ≔ ‖𝜺𝜺‖ = �2
3
∙ [𝜀𝜀12 + 𝜀𝜀22 + 𝜀𝜀32],   𝜀𝜀3 = −(𝜀𝜀1 + 𝜀𝜀2) (4) 

Despite the fact that Eq. 4 is identical to the von Mises equivalent plastic strain definition, no 
isotropic material behavior is implied here, and Eq. 4 should be considered as a material 
independent and pure kinematic quantity. 

To proceed, the strain difference 

∆𝐅𝐅𝐅𝐅𝐅𝐅∗ = (∆FLC1∗,∆FLC2∗)𝑇𝑇 ≔ 𝐅𝐅𝐅𝐅𝐅𝐅∗ − 𝜺𝜺∗ (5) 

and the following strain ratio 

𝛽𝛽 ≔ FLC2
FLC1

= ∆FLC2∗

∆FLC1∗
 (6) 

are defined. In Eq. 6 two equivalent definitions of 𝛽𝛽 are provided, and the one to be used depends 
on which input data are known, as will be become clear from the derivations that follow. 

Using the strain norm Eq. 4, we may write: 

‖∆𝐅𝐅𝐅𝐅𝐅𝐅∗‖ = ∆FLC1∗ ∙  𝜂𝜂(1,𝛽𝛽)   with   𝛽𝛽 = FLC2
FLC1

 (7) 
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Inserting Eq. 7 in Eq. 3 yields the strain differences 

∆FLC1∗ = ‖𝐅𝐅𝐅𝐅𝐅𝐅‖−‖𝜺𝜺∗‖
𝜂𝜂(1,𝛽𝛽)

, ∆FLC2∗ = 𝛽𝛽 ∙ ∆FLC1∗  (8) 

Finally, inserting Eq. 8 into Eq. 5 gives the desired strain solutions 

FLC𝑖𝑖∗ = 𝜀𝜀𝑖𝑖∗ + ∆FLC𝑖𝑖∗,   𝑖𝑖 = 1,2 (9) 

Inverse Retro Analysis 
As shown before, the forward retro analysis can be used to reproduce 𝐅𝐅𝐅𝐅𝐅𝐅∗ using 𝐅𝐅𝐅𝐅𝐅𝐅 and 𝜺𝜺∗ as 
input data, i.e. 𝐅𝐅𝐅𝐅𝐅𝐅∗ = retro(𝐅𝐅𝐅𝐅𝐅𝐅, 𝜺𝜺∗). While this sounds not very useful at first glance, the true 
value of this procedure is revealed by inverting the process, called inverse retro analysis: 

𝐅𝐅𝐅𝐅𝐅𝐅 = retro−1(𝐅𝐅𝐅𝐅𝐅𝐅∗, 𝜺𝜺∗) (10) 

Using the strain norm Eq. 4, the right-hand side of Eq. 3 becomes 

‖𝐅𝐅𝐅𝐅𝐅𝐅‖ = FLC1 ∙ 𝜂𝜂(1,𝛽𝛽)   with   𝛽𝛽 = ∆FLC2∗

∆FLC1∗
 (11) 

Inserting this expression in Eq. 3 yields the final strain solutions 

FLC1 = ‖𝜺𝜺∗‖+‖𝐅𝐅𝐅𝐅𝐅𝐅∗−𝜺𝜺∗‖
𝜂𝜂(1,𝛽𝛽) ,   FLC2 = 𝛽𝛽 ∙ FLC1 (12) 

Most importantly, the inverse retro analysis enables the removal of pre-strain effects from a given 
FLC, which is very attractive to the sheet metal forming community, because it allows to correct 
experimental data accordingly, see below. 

Remark. It should be mentioned that a similar strain-path correction approach was developed 
by Leppin et al. [6], who incrementally followed the nonlinear strain-paths recorded during their 
Nakajima tests. Basically, their incremental procedure is the most consistent approach, but it has 
some important disadvantages: (i) it presumes a measurement system equipped with the necessary 
data acquisition, which is not available in all laboratories; (ii) the strain measurement errors 
accumulate; (iii) for the sake of consistency, the bending strain compensation must be 
incrementally employed, and any approximations associated with the underlying bending 
correction theory accumulate. Obviously, the latter contributions will bias the integrated strains to 
some extent. As a final remark, the approach of Leppin et al. [6] accounts implicitly for pre-strains, 
whereas the approach developed in the present work takes pre-strains explicitly into account, 
thereby enabling both a forward and an inverse retro analysis. 
Bending Strain Analysis 
Introduction. The overall objective is to calculate the midplane strains of the deformed Nakajima 
sample from known (measured) surface strains. For this purpose, the strain theory for shell bending 
derived in Timoshenko & Gere [10] is employed. 
General equations. According to Timoshenko & Gere [10, pp. 440-441], the surface strains of a 
bent shell can be calculated from 

𝑒𝑒𝑗𝑗(𝑧𝑧) = 𝑒𝑒𝑗𝑗,mid

1−𝑧𝑧/𝑅𝑅𝑗𝑗
− 𝑧𝑧

1−𝑧𝑧/𝑅𝑅𝑗𝑗
∙ � 1
�1−𝑒𝑒𝑗𝑗,mid�∙𝑅𝑅�𝑗𝑗

− 1
𝑅𝑅𝑗𝑗
� ,    𝑗𝑗 = 1,2 (13) 
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with 𝑅𝑅𝑗𝑗 and 𝑅𝑅�𝑗𝑗 denoting the radius of curvature in the undeformed and deformed configuration, 
respectively. The coordinate 𝑧𝑧 points towards the center point of curvature and is zero in the shell’s 
midplane. Accordingly, at the convex side of the shell 𝑧𝑧 = −𝑡𝑡/2 and at the concave side 𝑧𝑧 = +𝑡𝑡/2, 
with 𝑡𝑡 being the shell’s thickness. The respective strain in the midplane is 𝑒𝑒𝑗𝑗,mid. Note that all 
strains in Eq. 13 are engineering strains. In the undeformed configuration the blank is flat, i.e. 
𝑅𝑅𝑗𝑗 → ∞. Accordingly, Eq. 13 simplifies to 

𝑒𝑒𝑗𝑗(𝑧𝑧) = 𝑒𝑒𝑗𝑗,mid −
𝑧𝑧

�1−𝑒𝑒𝑗𝑗,mid�∙𝑅𝑅�𝑗𝑗
,    𝑗𝑗 = 1,2 (14) 

We consider the strains at the convex surface of the deformed sample, i.e. at 𝑧𝑧 = −𝑡𝑡/2, which are 
assumed of being known from measurements: 

𝑒𝑒𝑗𝑗,surf ≔ 𝑒𝑒𝑗𝑗(𝑧𝑧 = −𝑡𝑡/2) = 𝑒𝑒𝑗𝑗,mid + 𝑡𝑡/2
�1−𝑒𝑒𝑗𝑗,mid�∙𝑅𝑅�𝑗𝑗

,    𝑗𝑗 = 1,2 (15) 

This may be rearranged to give the following quadratic equation in terms of 𝑒𝑒𝑗𝑗,mid: 

�𝑒𝑒𝑗𝑗,mid�
2

+ �−1 − 𝑒𝑒𝑗𝑗,surf� ∙ 𝑒𝑒𝑗𝑗,mid + �𝑒𝑒𝑗𝑗,surf −
𝑡𝑡/2
𝑅𝑅�𝑗𝑗
� = 0,    𝑗𝑗 = 1,2 (16) 

This equation possesses two possible solutions, but only the following one yields physically 
plausible results: 

𝑒𝑒𝑗𝑗,mid = 1+𝑒𝑒𝑗𝑗,surf

2
− ��1+𝑒𝑒𝑗𝑗,surf

2
�
2
− �𝑒𝑒𝑗𝑗,surf −

𝑡𝑡/2
𝑅𝑅�𝑗𝑗
� ,    𝑗𝑗 = 1,2 (17) 

The engineering midplane strains can be converted to logarithmic strains, and vice versa, 
according to 

𝜀𝜀𝑗𝑗 = ln�1 + 𝑒𝑒𝑗𝑗�   ⇔   𝑒𝑒𝑗𝑗 = exp�𝜀𝜀𝑗𝑗� − 1,    𝑗𝑗 = 1,2 (18) 

Application to the Nakajima test. The strain theory may be transferred to the Nakajima test as 
follows. Regarding the midplane’s radius of curvature, we assume 

𝑅𝑅�1 = 𝑅𝑅�2 = 𝑅𝑅p + 𝑡𝑡/2 (19) 

with the punch radius 𝑅𝑅p and the current sheet thickness 𝑡𝑡. The engineering midplane strains 𝑒𝑒𝑗𝑗,mid 
can be computed from the measured surface strains at failure (constituting the given Nakajima 
FLC) using Eq. 17 as follows:  

𝑒𝑒𝑗𝑗,mid = 1+𝑒𝑒𝑗𝑗,surf

2
− ��1+𝑒𝑒𝑗𝑗,surf

2
�
2
− �𝑒𝑒𝑗𝑗,surf −

𝑡𝑡/2
𝑅𝑅p+𝑡𝑡/2

� ,    𝑗𝑗 = 1,2 (20) 

Before entering Eq. 20, the logarithmic surface strains must be converted to engineering strains 
using Eq. 18, and after evaluation of Eq. 20 the engineering strains 𝑒𝑒𝑗𝑗,mid can be converted back 
to logarithmic strains. 

Using concise notation, we may summarize the outlined computation as follows: 
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1. Input: punch radius 𝑅𝑅p; initial blank thickness 𝑡𝑡0; measured surface strains 𝜀𝜀𝑗𝑗,surf, 𝑗𝑗 = 1,2 
2. Calculate current blank thickness: 𝑡𝑡 = 𝑡𝑡0 ∙ exp (−(𝜀𝜀1,surf + 𝜀𝜀2,surf)) 
3. Convert to engineering strains: 𝑒𝑒𝑗𝑗,surf = exp�𝜀𝜀𝑗𝑗,surf� − 1, 𝑗𝑗 = 1,2 
4. Calculate midplane strains: 𝑒𝑒𝑗𝑗,mid = surface2midplane(𝑒𝑒𝑗𝑗,surf,𝑅𝑅p, 𝑡𝑡) , 𝑗𝑗 = 1,2 
5. Convert to logarithmic strains (output): 𝜀𝜀𝑗𝑗,mid = ln�1 + 𝑒𝑒𝑗𝑗,mid�, 𝑗𝑗 = 1,2 

The logarithmic midplane strains are regarded as to constitute a bending compensated FLC. In 
general, the bending strains must be subtracted from the FLC data before the pre-strains are 
removed. 

Remark. Hill [5, p. 287] rates  

neutral plane ≈ central plane throughout bending (21) 

as a good approximation for plane-strain bending, provided that the radius of curvature is larger 
than four to five times the sheet’s thickness. Furthermore, in a detailed analysis, assuming ideal-
plastic material behavior, Hill [5, p. 293] and Lippmann [7, p. 94] derived the radius of the neutral 
surface in plane-strain bending under tension of sheets as 𝑅𝑅� = �𝑅𝑅i ∙ 𝑅𝑅o ∙ exp (−𝑝𝑝/(4𝑘𝑘)), with 𝑅𝑅i 
and 𝑅𝑅o being the inner and outer radius of the bent sheet, respectively, 𝑝𝑝 the contact pressure 
caused by the bending tool and 𝑘𝑘 the material’s shear yield stress. Even this result suggests that 
the approximation in Eq. 21 can be justified under usual conditions if 𝑝𝑝 is not too large compared 
to the yield stress. 
Application Example I 
The intention of the considered application example is to demonstrate the capabilities of the 
forward retro analysis. In the following scenario we consider two user-supplied reference FLCs, 
which are assumed of being given: 

1. A user-supplied FLC based on linear strain-paths, called FLC. 
2. A user-supplied FLC based on bi-linear strain-paths, called FLC∗. 

Both FLCs were calculated using the elastic-plastic CST/M-K necking model, as described in 
detail in the paper of Aretz [2], because in a simulation model the pre-strains can be prescribed 
exactly, which is impossible in experiments. Bending strains are absent in all FLC simulations. 

The material considered in all FLC simulations is a rolled sheet made of the aluminium alloy 
AA2008-T4, whose material data were taken from the paper of Lege et al. [4]. In accordance with 
the said reference, the yield surface was described by means of the orthotropic non-quadratic 
“Yld89” yield function (cf. Barlat & Lian [3]), whose material dependent parameters are 𝑎𝑎 =
0.119316E+01, ℎ = 0.115889E+01, 𝑝𝑝 = 0.102435E+01, along with the yield function’s 
exponent 𝑀𝑀 = 8. Isotropic hardening was assumed, and the hardening curve was described using 
the Voce ansatz function of the form 𝑌𝑌ref(𝜀𝜀)̅ = 𝐴𝐴 − 𝐵𝐵 ∙ exp (−𝐶𝐶 ∙ 𝜀𝜀)̅ with the parameters 𝐴𝐴 = 408, 
𝐵𝐵 = 233 and 𝐶𝐶 = 6.14. 

 
Table 1. Definition of the considered pre-straining scenarios. 

Scenario No. Pre-strains {𝜀𝜀2∗, 𝜀𝜀1∗} 
1 {−0.04, 0.1} 
2 {0, 0.1} 
3 {0.05, 0.05} 

 
In all FLC simulations the same material model was used, and only the pre-straining according 

to Table 1 was varied. The FLC simulation results pertaining to zero and non-zero pre-strains are 
shown in Fig. 1, labelled as “FLC (sim. )” and “FLC∗ (sim. )”, respectively. The objective is to use 
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the forward retro analysis to calculate FLC∗ from FLC for the pre-straining scenarios defined in 
Table 1. The results of these analyses are labelled as “FLC∗ (forward retro)” in Fig. 1, and reveal 
that 𝐅𝐅𝐅𝐅𝐅𝐅∗ ≈ retro(𝐅𝐅𝐅𝐅𝐅𝐅, 𝜺𝜺∗) holds with very good accuracy (compare grey and green curves) in 
each scenario. 

 

     
Figure 1. Forward retro analysis results for different pre-straining scenarios (cf. Table 1); from 

left to right: {𝜀𝜀2∗, 𝜀𝜀1∗} = {−0.04, 0.1}, {𝜀𝜀2∗, 𝜀𝜀1∗} = {0, 0.1} and {𝜀𝜀2∗, 𝜀𝜀1∗} = {0.05, 0.05}. 
Application Example II 
The intention of the second application example is to demonstrate the capabilities of the inverse 
retro analysis. Here, the pre-straining scenario no. 1 defined in Table 1 is considered. Figure 2 
summarizes the associated results. 

The reference FLC shown in Fig. 2 (left), labelled as “Reference (input)”, pertains to zero pre-
strains and is identical to the previous application example. Application of the forward retro 
analysis to the FLC “Reference (input)”, along with the pre-strains {𝜀𝜀2∗, 𝜀𝜀1∗} = {−0.04, 0.1}, yields 
the FLC “Forward retro (output)” in Fig. 2 (left). 

In Fig. 2 (right) the process is reversed: the results of the previous forward retro analysis, now 
labelled as “Forward retro (input)” in Fig. 2 (right), are fed to the inverse retro analysis, yielding 
the FLC “Inverse retro (output)” in Fig. 2 (right), which is identical to the FLC “Reference (input)” 
in Fig. 2 (left). This confirms the important theoretical prerequisite 

𝐅𝐅𝐅𝐅𝐅𝐅 = retro−1(retro(𝐅𝐅𝐅𝐅𝐅𝐅, 𝜺𝜺∗), 𝜺𝜺∗) (22) 

which means that the forward and inverse retro analysis neutralize each other. 
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Figure 2. Inverse retro analysis results for the pre-straining scenario no. 1 (cf. Table 1). 

Application Example III 
In the last application example, measured FLCs acquired by Nakajima tests are considered, which 
are intrinsically biased by pre-strains. Therefore, these FLCs will be labelled as FLC∗. Both pre-
strains and bending strains will be removed from the FLC∗ data as described above. In what 
follows, it is assumed that pre-straining occurred under equibiaxial tension, and that the minor 
strain value of the pre-strains equals the minor strain of FLCmin∗ , which reads in concise notation 
𝜀𝜀1∗ = 𝜀𝜀2∗ = (𝐅𝐅𝐅𝐅𝐅𝐅min∗ )2. The punch radius used in the Nakajima experiments was 𝑅𝑅p = 50 mm, 
which is required for the bending strain calculation. It is important that the bending strain 
correction is carried out before the pre-strain correction. 

The considered materials were made of two aluminium alloys of the 5000 class with different 
gauges (1.5 mm and 2.5 mm, respectively), which leads to different contributions of the respective 
bending correction. For both materials FLCs were determined according to the DIN EN ISO 
12004-2 standard, with 3 repetitions for each sample geometry. The averaged results are shown in 
Fig. 3 (labelled as “Input”). In the first step, the bending strains were corrected, i.e. the midplane 
strains were calculated from the measured surface strains, yielding the intermediate results labelled 
as “Bending correction” in Fig. 3. Thereafter, these midplane strains are fed to the inverse retro 
analysis, along with the pre-strains 𝜀𝜀1∗ = 𝜀𝜀2∗ = (𝐅𝐅𝐅𝐅𝐅𝐅min∗ )2, yielding the final results labelled as 
“Output” in Fig. 3. It is very interesting to observe how the FLCs changed after the final correction 
step: while the FLCmin-point of the 1.5 mm material was significantly lifted in major strain 
direction, this is not the case for the 2.5 mm material, where the FLCmin-point experiences almost 
no change in terms of its major strain. The primary reason for this observation is that the thinner 
material’s FLCmin∗ -point is originally much more displaced along the minor strain axis, which 
causes a correspondingly large correction by the inverse retro analysis towards a larger major strain 
value. Furthermore, the bending correction is larger for the thicker material, i.e. the thicker material 
“looses” more major strain after bending correction than the thinner material, as substantiated 
below. As expected, after the final correction step FLCmin coincides with plane strain deformation 
in both cases, i.e. FLCmin has moved to the major strain axis.  
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Figure 3. Bending correction followed by pre-strain correction using the inverse retro analysis 

for two materials made of 5xxx aluminium alloys with different compositions and gauges. 
 

  
Figure 4. Direct comparison of the corrected FLC data shown in Fig. 3 (left) and calculated 

bending strains (right). 
In Fig. 4 a direct comparison of both FLCs after the final correction step is shown. In accordance 

with the main motivation for the present work, it is now possible to compare different materials 
made of different gauges in terms of their respective FLC. In addition, Fig. 4 does also show the 
bending contribution in terms of the major and minor strains, calculated as the respective 
difference between the uncorrected FLC data and the corresponding data after bending correction, 
in accordance with Affronti & Merklein [1]. As expected, the bending strains are much larger in 
the case of the thicker material. Furthermore, one may see that the bending strain depends almost 
linearly on the strain ratio 𝜀𝜀2/𝜀𝜀1: according to the results in Fig. 4, the smallest bending strain 
occurs in equibiaxial stretching and the largest one in the narrowest samples. 
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Summary 
In the present work, a method to comprehensively correct FLC data acquired by means of the 
Nakajima test in terms of bending strains and pre-strains is proposed, which enables a direct 
comparison of FLCs pertaining to different materials made of different gauges. 

It was demonstrated that the pre-strain correction reproduces theoretical results very well, and 
that it is self-consistent in the sense that it possesses the ability to neutralize itself, which is an 
important theoretical prerequisite. 

The application of both the pre-strain and the bending correction to experimental data yields 
plausible results, but there are aspects of the proposed correction method which should be 
addressed in more detail in future work: 

1. Regarding pre-strain correction, the following assumptions were implied: (i) the pre-strains 
can be identified as 𝜀𝜀1∗ = 𝜀𝜀2∗ = (𝐅𝐅𝐅𝐅𝐅𝐅min∗ )2 and (ii) these pre-strains can be universally 
assigned to all FLC samples. The question is whether this rather simple approach is 
sufficiently accurate or needs to be refined. 

2. The proposed bending strain correction is based on the shell bending kinematics found in 
the textbook of Timoshenko & Gere [10, pp. 440-441]. The associated assumptions 
introduced in the present work (e.g. Eq. 19) should be carefully verified and, if necessary, 
revised in future work. 
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