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Abstract. Several studies in the literature have been devoted to the permeability prediction of 
metal foams, including that involving the Representative Unit Cell (RUC) model. The RUC 
modelling approach is an attractive modelling method due to the simple rectangular geometry, as 
well as its satisfying performance in comparison to other models and experimental data as proven 
elsewhere in the literature for porous media. The subject of compression of metal foams has been 
addressed elsewhere in the literature, but this study is the first to involve an all-inclusive analytical 
model where both streamwise and transverse compression are accounted for. The Darcy and 
Forchheimer permeability coefficients of the compressed foam (or three-strut) RUC model are 
presented. Furthermore, a geometric approach requiring measured geometric parameters and a 
combined geometric-kinetic approach involving measured permeability coefficients are included 
for determining the specific surface area. Geometric parameters required to determine the 
permeability and specific surface area predictions using the compressed foam RUC model include 
the uncompressed porosity, pore dimension and strut diameter, as well as the compression factor. 
The model is evaluated through comparison with available experimental data and empirical models 
obtained from the literature for compressed metal foams. The compressed RUC model predictions 
produce expected tendencies of geometrical parameters of metal foams under compression and the 
comparison with experimental data reveal satisfactory results. 
Introduction 
In the literature the topic of compression of foamlike media is often addressed. [1] and [2], for 
example, mentioned the advantages of compressed metal foams in that with compression, the 
density of the foam increases and consequently improves heat transfer and structural rigidity. The 
only geometric model that accommodates the structural transformation induced by compression 
as found by the author in the literature, is the streamwise compression transformation of the three-
strut Representative Unit Cell (RUC) model [3,4]. Compression in the transverse direction (i.e. 
perpendicular to the direction of flow) is another consideration since it does appear in experimental 
studies available in the literature. For example, [5] investigated the controlling of microfluidic 
flow in microphysiological systems by compressing foams. Other examples of studies regarding 
the compression of metal foams include [1], [6], [7] and [8]. In this study the foam (or three-strut) 
RUC model is adjusted to accommodate the accompanied structural transformations. The model 
presented retains the rectangular nature, but is adjusted to facilitate different pore dimensions for 
each of the three principal directions. The model can consequently be applied to streamwise or 
transverse compression by implementing structural assumptions to the adjusted RUC model 
presented. From the adjusted model, expressions for the Darcy permeability, Forchheimer 
permeability and specific surface area can be determined. The equations for the specific surface 
area obtained using a geometric approach (i.e. in terms of pore-scale dimensions) is included as 
well as an example of a combined geometric-kinetic approach where the measured permeability 
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coefficient is required, rather than one of the pore-scale dimensions, in order to determine the 
specific surface area. Finally, an example of how the structurally transformed RUC model is 
applied to a specific case study of compression is illustrated using available experimental data for 
the permeability coefficients and specific surface area. 
Model parameters 
In this study, permeability coefficients are defined such that they are related to the pressure drop, 
as described by the Darcy-Forchheimer equation, in the following manner: 
 

∆𝑝𝑝
𝐿𝐿

= 𝜇𝜇
𝐾𝐾
𝑞𝑞 + 𝜌𝜌

𝐾𝐾𝐹𝐹
𝑞𝑞2 ,   (1) 

 
where 𝐾𝐾 and 𝐾𝐾𝐹𝐹 are the permeability coefficients of the Darcy and Forchheimer regimes, 
respectively,  ∆𝑝𝑝/𝐿𝐿 is the pressure gradient, 𝜇𝜇 is the dynamic viscosity, 𝜌𝜌 is the density of the fluid, 
and 𝑞𝑞 is the superficial velocity. The compression factor, denoted by 𝑒𝑒𝑥𝑥, is introduced to relate the 
dimensions of the uncompressed models to the dimensions of the compressed models, where 0 <
𝑒𝑒𝑥𝑥 ≤ 1. When 𝑒𝑒𝑥𝑥 = 1, the pore dimension corresponds to the uncompressed state. The 
compression factor is given by the ratio 𝑒𝑒𝑥𝑥 = ℎ𝑓𝑓/ℎ𝑜𝑜, where ℎ𝑜𝑜 and ℎ𝑓𝑓 respectively denote the 
uncompressed and post-compression thickness of the porous medium sample in question [9]. The 
compression factor in this study is consequently determined as follows: 
 

𝑒𝑒𝑥𝑥 = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥𝑜𝑜

 ,   (2) 
 

where 𝑑𝑑 denotes the cell diameter of the RUC model and 𝑥𝑥 respectively represents the subscripts 
‘∥’, ‘⊥1’ and ‘⊥2’ to denote compression in the streamwise direction and two possible transverse 
directions (e.g. 𝑒𝑒∥ = 𝑑𝑑∥/𝑑𝑑∥𝑜𝑜 denotes the streamwise compression factor). The subscript ‘𝑜𝑜’ denotes 
the uncompressed state. A general equation relating the porosity, 𝜖𝜖, and compression factor was 
presented in [9,10], i.e. 
 

𝜖𝜖 = 1 − 1−𝜖𝜖𝑜𝑜
𝑒𝑒𝑥𝑥

 .   (3) 
 
Eq. 3 is based on the assumption that the base area of the porous medium and the solid volume 

of the medium remains constant, as explained in [9]. In order to determine the values of the 
dimensions that are necessary to calculate the required predictions for the permeability coefficients 
and specific surface area provided by the adjusted RUC models, information regarding the 
direction of compression and compression factor are essential.  
Adjusted three-strut RUC model 
The three-strut RUC model with adjustable cell dimensions, is shown in Fig. 1. An expression for 
the porosity is determined first from which relations between the model dimensions can be 
obtained.  
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Model dimension relations. The total volume of the adjusted RUC model is 𝑈𝑈𝑜𝑜 =  𝑑𝑑∥𝑑𝑑⊥1𝑑𝑑⊥2 
and the solid volume of the adjusted three-strut RUC model can be acquired from Fig. 1, which 
leads to the determination of the expression for the porosity, i.e. 

 

𝜖𝜖 = 1 −
𝑈𝑈𝑠𝑠
𝑈𝑈𝑜𝑜

= 1 −
𝑑𝑑𝑠𝑠

2

𝑑𝑑∥𝑑𝑑⊥1
−

𝑑𝑑𝑠𝑠
2

𝑑𝑑∥𝑑𝑑⊥2
−

𝑑𝑑𝑠𝑠
2

𝑑𝑑⊥1𝑑𝑑⊥2
+

2 𝑑𝑑𝑠𝑠
3

𝑑𝑑∥𝑑𝑑⊥1𝑑𝑑⊥2
 . 

  
(4) 

 
Using Eq. 4, relations between the pore-scale dimensions and porosity can be attained.  
Permeability prediction. In the studies of [3] and [10], an expression for the pressure drop of 

the Darcy flow regime is provided, as well as a derivation of the Darcy permeability coefficient of 
the RUC model. A similar pressure drop expression is provided in this study, with the difference 
that it is adapted to accommodate the adjustable dimensions of the adjusted three-strut RUC model, 
i.e.  
 

∆𝑝𝑝 =  
𝑆𝑆∥1𝜏𝜏𝑤𝑤∥1+𝑆𝑆∥2𝜏𝜏𝑤𝑤∥2+𝑆𝑆⊥1,1𝜏𝜏𝑤𝑤⊥1,1

+𝑆𝑆⊥1,2𝜏𝜏𝑤𝑤⊥1,2
+𝑆𝑆⊥2,1𝜏𝜏𝑤𝑤⊥2,1

+𝑆𝑆⊥2,2𝜏𝜏𝑤𝑤⊥2,2

𝐴𝐴𝑝𝑝∥
 . 

  
(5) 

 
In Eq. 5, 𝑆𝑆∥, 𝑆𝑆⊥1 and 𝑆𝑆⊥2 denote the surface areas oriented in the directions relative to flow 

(which includes two transverse directions) and 𝜏𝜏∥, 𝜏𝜏⊥1 and 𝜏𝜏⊥2 denote the magnitude of the 
corresponding average wall shear stresses. The subscripts of ‘1’ and ‘2’ in Eq. 5 (the second 
numerical subscript in the case of the transverse parameters) are utilized in order to distinguish 
between the two surface areas bounding the same channel as well as the magnitude of the 
corresponding average wall shear stresses. Using Fig. 1, the surface areas and average wall shear 
stress expressions are consequently determined to be 
  

𝑆𝑆∥1 = 2𝑑𝑑s�𝑑𝑑⊥1 −  𝑑𝑑s� ,   (6) 
𝑆𝑆∥2 = 2𝑑𝑑𝑠𝑠�𝑑𝑑⊥2 −  𝑑𝑑s� ,  (7) 

Fig. 1 Three-strut RUC model with adjustable dimensions 
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𝑆𝑆⊥1,1 = 2𝑑𝑑s�𝑑𝑑⊥2 −  𝑑𝑑𝑠𝑠� ,  (8) 
𝑆𝑆⊥1,2 = 2𝑑𝑑s(𝑑𝑑∥ −  𝑑𝑑𝑠𝑠)  ,  (9) 
𝑆𝑆⊥2,1 = 2𝑑𝑑s�𝑑𝑑⊥1 −  𝑑𝑑𝑠𝑠� ,  (10) 
𝑆𝑆⊥2,2 = 2𝑑𝑑s(𝑑𝑑∥ −  𝑑𝑑𝑠𝑠) ,  (11) 

 
and 

𝜏𝜏𝑤𝑤∥1
= 6𝜇𝜇𝑤𝑤∥

𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠
= 6𝑑𝑑⊥1𝑑𝑑⊥2  

�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠��𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
2  𝜇𝜇𝑞𝑞 ,   (12) 

𝜏𝜏𝑤𝑤∥2
= 6𝜇𝜇𝑤𝑤∥

𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠
= 6𝑑𝑑⊥1𝑑𝑑⊥2  

�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠� 

 𝜇𝜇𝑞𝑞 ,   (13) 

𝜏𝜏𝑤𝑤⊥1,1
= 6𝜇𝜇𝑤𝑤⊥1

𝑑𝑑∥− 𝑑𝑑𝑠𝑠
= 6𝑑𝑑⊥1𝑑𝑑⊥2  

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠�
2�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠� 

 𝜇𝜇𝑞𝑞 ,   (14) 

𝜏𝜏𝑤𝑤⊥1,2
= 6𝜇𝜇𝑤𝑤⊥1

𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠
= 6𝑑𝑑⊥1𝑑𝑑⊥2  

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠��𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
2  𝜇𝜇𝑞𝑞 ,   (15) 

𝜏𝜏𝑤𝑤⊥2,1
= 6𝜇𝜇𝑤𝑤⊥2

𝑑𝑑∥− 𝑑𝑑𝑠𝑠
= 6𝑑𝑑⊥1𝑑𝑑⊥2  

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠�
2�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠� 

 𝜇𝜇𝑞𝑞 ,   (16) 

𝜏𝜏𝑤𝑤⊥2,2
= 6𝜇𝜇𝑤𝑤⊥2

𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠
= 6𝑑𝑑⊥1𝑑𝑑⊥2  

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠��𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2  𝜇𝜇𝑞𝑞 ,   (17) 

 
respectively. 𝑤𝑤∥, 𝑤𝑤⊥1  and 𝑤𝑤⊥2 in Eqs. 12 to 17 denote the average channel velocities in the 
indicated directions. The expression for the streamwise cross-sectional flow area (𝐴𝐴𝑝𝑝∥) is 
furthermore given by 
 

𝐴𝐴𝑝𝑝∥ = �𝑑𝑑⊥1 −  𝑑𝑑𝑠𝑠��𝑑𝑑⊥2 −  𝑑𝑑𝑠𝑠� .   (18) 
  

Substituting the equations for the surface areas as given by Eqs. 6 to 11, Eqs. 12 to 17 and Eq. 
18 into Eq. 5, leads to the following equation for the pressure gradient of the Darcy flow regime: 
 

△𝑝𝑝
𝑑𝑑∥

= 24 𝑑𝑑𝑠𝑠 𝑑𝑑⊥1𝑑𝑑⊥2𝜇𝜇𝜇𝜇
𝑑𝑑∥�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠��𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�

� 1

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠�
2 + 1

�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2 + 1

�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
2� .   (19) 

 
The equation used to determine the pressure gradient of the Forchheimer flow regime is the 

same as the equation utilized for this purpose by [11], i.e.  
 

−▽ 〈𝑝𝑝〉𝑓𝑓 = 𝑆𝑆face

𝜖𝜖𝑈𝑈𝑜𝑜
𝜌𝜌𝑤𝑤∥

2𝑛𝑛� = 𝑑𝑑⊥1𝑑𝑑⊥2�𝑑𝑑𝑠𝑠𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠2� 

𝜖𝜖𝑑𝑑∥�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�

2  𝜌𝜌𝑞𝑞2𝑛𝑛� ,   (20) 

 
where 𝑆𝑆face is the cross-sectional solid area that faces upstream, as determined from Fig. 1. The 
Ergun-type equation consequently leads to 
 

△𝑝𝑝
𝑑𝑑∥

= 24 𝑑𝑑𝑠𝑠 𝑑𝑑⊥1𝑑𝑑⊥2
𝑑𝑑∥�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠��𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�

� 1

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠�
2 + 1

�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2 + 1

�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
2� 𝜇𝜇𝑞𝑞 +

𝑑𝑑⊥1𝑑𝑑⊥2�𝑑𝑑𝑠𝑠𝑑𝑑⊥1−𝑑𝑑𝑠𝑠
2� 

𝜖𝜖𝑑𝑑∥�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�

2  𝜌𝜌𝑞𝑞2 , 

  

(21) 
 

and comparing Eq. 21 with Eq. 1 yields the expressions of the Darcy and Forchheimer permeability 
coefficients of the adjusted three-strut RUC model, respectively denoted by 𝐾𝐾 and 𝐾𝐾𝐹𝐹, i.e. 
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𝐾𝐾 = 𝑑𝑑∥�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠��𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
24 𝑑𝑑𝑠𝑠 𝑑𝑑⊥1𝑑𝑑⊥2

� 1

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠�
2 + 1

�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2 + 1

�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
2�
−1

 , 
  

(22) 

 
and 
 

𝐾𝐾𝐹𝐹 = 𝜖𝜖𝑑𝑑∥�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�

2
 

𝑑𝑑⊥1𝑑𝑑⊥2�𝑑𝑑𝑠𝑠𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠2�
 . 

  (23) 

 
Specific surface area: geometric approach. The total surface area of the adjusted three-strut 

RUC model can be determined by adding all the individual surface areas given by Eqs. 6 to 11.  
Dividing the result by the total RUC volume, the equation for the specific surface area can be 
determined, i.e. 
 

𝑆𝑆𝑣𝑣 = 4 𝑑𝑑𝑠𝑠
𝑑𝑑∥𝑑𝑑⊥1𝑑𝑑⊥2

�(𝑑𝑑∥ −  𝑑𝑑𝑠𝑠) + �𝑑𝑑⊥1 −  𝑑𝑑𝑠𝑠� + �𝑑𝑑⊥2 −  𝑑𝑑𝑠𝑠�� .   (24) 
 
Due to the dependence of the specific surface area on the geometry of the three-strut RUC 

model as shown in Fig. 1, the porosity equation (Eq. 4) relates the dimensions in Eq. 24. 
Specific surface area: combined approach. In the combined kinetic-geometric approach for 

determining the specific surface area, also referred to as simply the combined approach, a 
permeability coefficient is utilized to determine 𝑆𝑆𝑣𝑣 instead of one of the pore-scale dimensions. 
Either one of the pore-scale dimensions in Eq. 24 can be replaced. The substitution of an expression 
for 𝐾𝐾 instead of the pore-scale dimension 𝑑𝑑∥ is considered in this study as an example of acquiring 
the specific surface area using a combined approach. First, the expression for 𝑆𝑆𝑣𝑣 (i.e. Eq. 24), needs 
to be rearranged to determine 𝑑𝑑∥ in terms of the specific surface area. This yields 
 

𝑑𝑑∥ = 4𝑠𝑠−4𝑑𝑑𝑠𝑠2

𝑑𝑑⊥1𝑑𝑑⊥2𝑆𝑆𝑣𝑣−4𝑑𝑑𝑠𝑠
  ,   (25) 

 
where 𝑠𝑠 = 𝑑𝑑𝑠𝑠��𝑑𝑑⊥1

−  𝑑𝑑𝑠𝑠� + �𝑑𝑑⊥2
−  𝑑𝑑𝑠𝑠��.  Eq. 25 is then substituted into Eq. 19 and rearranged in 

order to obtain the following third degree polynomial in 𝑆𝑆𝑣𝑣 from which 𝑆𝑆𝑣𝑣 can be solved: 
 

𝑎𝑎′ 𝑆𝑆𝑣𝑣3 + 𝑏𝑏′ 𝑆𝑆𝑣𝑣2 + 𝑐𝑐′ 𝑆𝑆𝑣𝑣 + 𝑔𝑔′ = 0 ,    
 
where 
 

 
with 𝑚𝑚 =

�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠��𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
24 𝑑𝑑𝑠𝑠 𝑑𝑑⊥1𝑑𝑑⊥2

 and 𝑛𝑛 = 1

�𝑑𝑑⊥1− 𝑑𝑑𝑠𝑠�
2 + 1

�𝑑𝑑⊥2− 𝑑𝑑𝑠𝑠�
2 . It should be noted that in order to 

determine the specific surface area by making use of the combined approach, experimental 
permeability data is required, e.g. experimental Darcy permeability data should be substituted into 

𝑎𝑎′ = −𝐾𝐾d⊥1
3d⊥2

3�1 + 𝑛𝑛d𝑠𝑠
2� 

𝑏𝑏′ = 12𝐾𝐾𝑑𝑑𝑠𝑠 d⊥1
2d⊥2

2�1 + 𝑛𝑛d𝑠𝑠
2� + 4𝑑𝑑𝑠𝑠d⊥1

2d⊥2
2(𝑚𝑚𝑑𝑑𝑠𝑠 + 2𝑛𝑛𝐾𝐾)�𝑠𝑠 − 𝑑𝑑𝑠𝑠

2� 
𝑐𝑐′ = −48𝐾𝐾𝑑𝑑𝑠𝑠

2𝑑𝑑⊥1𝑑𝑑⊥2�1 + 𝑛𝑛d𝑠𝑠
2� − 32𝑑𝑑𝑠𝑠

2𝑑𝑑⊥1𝑑𝑑⊥2(𝑚𝑚𝑑𝑑𝑠𝑠 + 2𝑛𝑛𝐾𝐾)�𝑠𝑠 − 𝑑𝑑𝑠𝑠
2�

− 16𝑑𝑑⊥1𝑑𝑑⊥2(2𝑚𝑚𝑑𝑑𝑠𝑠 + 𝑛𝑛𝐾𝐾)�𝑠𝑠 − 𝑑𝑑𝑠𝑠
2�

2
 

𝑔𝑔′ = 64𝐾𝐾𝑑𝑑𝑠𝑠
3�1 + 𝑛𝑛d𝑠𝑠

2� + 64𝑑𝑑𝑠𝑠
3(𝑚𝑚𝑑𝑑𝑠𝑠 + 2𝑛𝑛𝐾𝐾)�𝑠𝑠 − 𝑑𝑑𝑠𝑠

2� + 64𝑑𝑑𝑠𝑠(2𝑚𝑚𝑑𝑑𝑠𝑠 + 𝑛𝑛𝐾𝐾)�𝑠𝑠 − 𝑑𝑑𝑠𝑠
2�

2

+ 64𝑚𝑚�𝑠𝑠 − 𝑑𝑑𝑠𝑠
2�

3
.  

  

(26) 
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Eq. 26 in order to determine the specific surface area of the adjusted three-strut RUC model when 
using Eq. 26. 
Model application and validation 
In this section, the manner in which the compressed three-strut RUC model can be utilized and 
validated, using available experimental data obtained from [12], is shown and the predictions 
acquired are compared to that of the corresponding uncompressed model and experimental data. 
[12] investigated the correlations of the pressure drop for air flow through different foam samples, 
of which some were compressed. Permeability and specific surface area data for four of these foam 
samples that were compressed in the streamwise direction are shown in Table 1. 

 
Table 1 Experimental data obtained from [12] for aluminum foams 

𝜖𝜖𝑜𝑜 [ ] 𝜖𝜖 [ ] 𝑒𝑒 [ ] 𝑑𝑑𝑝𝑝𝑜𝑜[𝜇𝜇m] 𝐾𝐾 × 109[m2] 𝐾𝐾𝐹𝐹 × 103[m] 𝑆𝑆𝑣𝑣 [m−1] 
0.921 0.679 0.246 1300 0.66 0.323 5104.3 

   0.921 0.774 0.350 1300 0.10 0.500 3593.7 
0.922 0.682 0.245 2500 0.10 0.588 3169.3 
0.922 0.794 0.379 2500 0.21 0.00012 2053.1 
 
The uncompressed porosity and PPI numbers (and hence a way to obtain the uncompressed 

pore diameter) were provided by [12], along with corresponding porosity and compression factor 
data, as shown in Table 1. The compression factor data, however, was determined by [12] by using 
Eq. 3 which assumes no lateral expansion of the foam under compression, as mentioned in the 
model parameters section of this study. Consequently, this condition is assumed in this study. Due 
to the media samples being compressed in the streamwise direction, it is deduced from Eq. 2 that 
 

𝑑𝑑∥ = 𝑒𝑒∥𝑑𝑑∥𝑜𝑜 .   (27) 
 

No value for the uncompressed strut diameter 𝑑𝑑𝑠𝑠𝑜𝑜 or the uncompressed cell diameter 𝑑𝑑∥𝑜𝑜  was 
provided by [12] from which all the parameters associated with the uncompressed state can be 
determined. Therefore, it is assumed that the uncompressed state of the three-strut RUC model is 
isotropic. This is similar to the assumption made by [13] in the implementation of the streamwise 
compressed three-strut RUC model in the application to data provided by [14]. Consequently, 
𝑑𝑑∥𝑜𝑜 = 𝑑𝑑⊥1𝑜𝑜 = 𝑑𝑑⊥2𝑜𝑜 = 𝑑𝑑𝑜𝑜 and 𝑑𝑑𝑜𝑜 can be obtained using the following relations between the 
dimensions of the isotropic three-strut RUC model: 
 

𝑑𝑑𝑜𝑜 =
2𝑑𝑑𝑝𝑝𝑜𝑜

3 −𝜓𝜓𝑜𝑜
 , 

  
(28) 

 
where 𝑑𝑑𝑠𝑠𝑜𝑜 = 𝑑𝑑𝑜𝑜 − 𝑑𝑑𝑝𝑝𝑜𝑜 and 𝜓𝜓𝑜𝑜 denoted a geometric factor, given by [3] 

 

𝜓𝜓𝑜𝑜 = 2 + 2 cos �
4𝜋𝜋
3

+
1
3

cos−1(2𝜖𝜖𝑜𝑜 − 1)�.   (29) 

 
It is furthermore assumed that 𝑑𝑑⊥1 = 𝑑𝑑⊥2 = 𝑑𝑑𝑜𝑜, due to no lateral expansion. Due to the decrease 

in porosity combined with the assumption of constant solid volume during compression, as well 
as the condition of no lateral expansion, 𝑑𝑑𝑠𝑠 increases with compression. The value of 𝑑𝑑𝑠𝑠 can be 
determined from the following rearrangement of Eq. 4: 
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2𝑑𝑑𝑠𝑠
3 + (−2𝑑𝑑𝑜𝑜 − 𝑑𝑑∥)𝑑𝑑𝑠𝑠

2 + 𝑑𝑑𝑜𝑜
2𝑑𝑑∥(1− 𝜖𝜖) = 0 .   (30) 

 
The Darcy permeability coefficient, Forchheimer permeability coefficient and specific surface 

area obtained using the geometric approach are thus, respectively, given by 
 

𝐾𝐾 = 𝑑𝑑∥(𝑑𝑑𝑜𝑜− 𝑑𝑑𝑠𝑠)2

24𝑑𝑑𝑠𝑠𝑑𝑑𝑜𝑜2
� 1

�𝑑𝑑∥− 𝑑𝑑𝑠𝑠�
2 + 2

(𝑑𝑑𝑜𝑜− 𝑑𝑑𝑠𝑠)2�
−1

 , 
  

(31) 

𝐾𝐾𝐹𝐹 = 𝜖𝜖𝑑𝑑∥(𝑑𝑑𝑜𝑜− 𝑑𝑑𝑠𝑠)3

2𝑑𝑑𝑠𝑠𝑑𝑑𝑜𝑜2
 ,   (32) 

 
and 
 

𝑆𝑆𝑣𝑣 = 4𝑑𝑑𝑠𝑠
𝑑𝑑∥𝑑𝑑𝑜𝑜2

[(𝑑𝑑∥ −  𝑑𝑑𝑠𝑠) + 2(𝑑𝑑𝑜𝑜 −  𝑑𝑑𝑠𝑠)] .   (33) 
   

The combined approach for determining the specific surface area can be utilized due to the 
availability of both permeability and specific surface area data by replacing 𝑑𝑑∥ with 𝐾𝐾. A visual 
representation of the streamwise compressed three-strut RUC model subject to deformation (with 
no lateral expansion) is shown in Fig. 2. In Figs. 3 to 5 the predictions and experimental data of 
the Darcy permeability coefficient, Forchheimer permeability coefficient and specific surface area 
(using both the geometric and combined approach of attaining 𝑆𝑆𝑣𝑣), utilizing the data provided in 
Table 1 together with Eqs. 27 to 33, are shown, respectively. Empirical expressions for the Darcy 
permeability and form drag coefficients were furthermore provided by [2] and [12], from which 
the expression for the form drag coefficient can be utilized to obtain the prediction for the 
Forchheimer permeability coefficient. The permeability predictions acquired and corresponding 
data for the foam samples of [12] are included in Figs. 3 and 4. In Fig. 3 the compressed three-
strut RUC model predictions provide closer correspondence to the experimental data than the 
uncompressed model predictions and In Fig. 4 it can be seen that the compressed RUC model 
corresponds excellently with the experimental data and performs better than the uncompressed and 
empirical models considered. The values provided by the experimental data are lower than that of 
the uncompressed model for both permeability coefficients, as expected, with the compressed 
three-strut RUC model predictions being in turn lower than that of the uncompressed model 
predictions. It is also noted that the compressed three-strut RUC model also provides closer 

Fig. 2 Three-strut RUC model under streamwise compression without lateral expansion 
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predictions to the experimental data than that of the empirical models of [2] and [10], which lends 
favor to the adjusted foam RUC model presented in this study.  

 

Fig. 3 Darcy permeability prediction versus porosity of RUC models and metal foam 
experimental data obtained from [10] under compression 

Fig. 4 Forchheimer permeability prediction versus porosity of RUC models and metal foam 
experimental data obtained from [10] under compression 
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In Fig. 5 the compressed three-strut RUC model once again corresponds closer to the 
experimental data, resulting from the predictions obtained using a geometric approach. The 
specific surface area predictions of the compressed RUC model acquired using a combined 
approach, however, corresponds closer to the predictions of the uncompressed model, which 
significantly under predicts the data. This may be due to the uncertainty already incorporated into 
the permeability prediction which is used as input to the combined approach. The combined 
approach can however be used to obtain 𝑆𝑆𝑣𝑣 values of the correct order of magnitude, should 
specific surface area data be required but is unavailable. 

Summary 
An adjusted foam (or three-strut) RUC model was presented that accommodates the parameter 
adjustments associated with compressed foamlike media and can be utilized in the application of 
both streamwise and transverse compression. Predictions for the Darcy and Forchheimer 
permeability coefficients, based on the adjusted three-strut RUC model, have been proposed, as 
well as the specific surface area prediction in terms of the linear pore-scale dimensions of the foam. 
A combined method for obtaining the specific surface area using the Darcy permeability, was 
furthermore included, where the experimentally obtained permeability can be utilized instead of 
one of the pore-scale dimensions, should specific surface area values be required and data is 
unavailable. Validation of the compressed RUC model was presented for streamwise compression 
with no lateral expansion and demonstrated using available experimental data. Comparison with 
experimental data for compressed foams revealed that the compressed model shows an 
improvement in predictions for the Darcy and Forchheimer coefficient values as well as specific 
surface area predictions when compared to that of the uncompressed model. Further model 
validation can be supported through the availability of additional experimental data that include 
measured characteristics of the uncompressed foam (i.e. the strut diameter of the uncompressed 
state) as well as permeability and specific surface area values of the compressed foam. 
  

Fig. 5 Specific surface area prediction versus porosity of RUC models and metal foam experimental 
data obtained from [10] under compression 
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